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Abstract

A new image reconstruction technique based on the usage of an Artificial Neural Network (ANN) is presented. The

most crucial factor in designing such a reconstruction system is the network architecture and the number of the input

projections needed to reconstruct the image. Although the training phase requires a large amount of input samples and

a considerable CPU time, the trained network is characterized by simplicity and quick response. The performance of

this ANN is tested using several image patterns. It is intended to be used together with a phantom rotating table and the

g-camera of IASA for SPECT image reconstruction.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Three-dimensional (3D) reconstruction techni-
ques from projections have been used for many
years in medical imaging. The most usual algo-
rithms are based on a Fourier Transformation
which has the disadvantage that a very large
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number of projections with uniformly distributed
angles are required.

In this project, a new image reconstruction
technique based on the usage of an Artificial
Neural Network (ANN) is presented. The most
crucial factor in designing such a reconstruction
system is the network architecture and the number
of the input projections needed to reconstruct
the image. The CPU time needed to train the
network is often equivalent or even more time
consuming to that of the conventional techniques.
However, once the ANN has completed the
learning phase, it could be applied to any relevant
set of input data of the same type to produce fast
d.
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results from the trained network without any
iterative process.

This reconstruction technique is intended to be
used with an automated phantom rotating system,
which is being developed at IASA together with an
existing g-camera for SPECT imaging. In the next
sections we describe briefly the development of the
rotary positioning table and the specifications of
the g-camera followed by the detailed presentation
of the image reconstruction procedure based on
ANN.
2. Description of the experimental setup

The final automated system consists of a
phantom rotating system which allows us to take
the projections at any selected set of angles, the g-
camera [1,2] with its data acquisition system and a
master computer (PC) which drives and controls
the whole system. The schematic diagram in Fig. 1
shows how all these hardware parts are connected
together. The reconstruction procedure for a given
type of input data, mainly defined by the number
of the planar records from the g-camera, and for a
given network architecture can be easily imple-
mented in the master computer.

2.1. The rotating system

The rotating system consists of a computer-
controlled rotating table manufactured by the
Arrick Robotics [3]. The table rotation around
Fig. 1. Schematic diagram of the experimental setup.
an axis perpendicular to the g-camera axis is
provided by a stepping motor which consists of a
rotor and four coils. The coils are supplied with
current through the MD-2 controller which is
attached to the rotating table by a standard 9-pin
cable. The MD-2 controller is further connected to
the parallel port of the master computer.

The motion of the rotating table to a desired set
of angles is programmed in the LabVIEW
environment running in the master computer.
Several drivers (VIs) have been developed in order
to control the stepping motor. A fine program-
ming of the bit register sequence for the four coils
allows a clockwise control of the motor in half,
single or double steps, resulting to a final angle
resolution of 0.2� [4].

2.2. The g-camera

The g-camera consists of an R2486 Position
Sensitive PMT equipped with 8� 8 crossed-wire
anode pairs, a 4.5 cm in diameter CsI(Tl) pixelized
crystal and a collimator. The anode signals after
pre-amplification are transferred to a CAMAC
system for digitization and data acquisition [1,2].
The CAMAC is controlled and read out by a
program written in Kmax (Sparrow Corporation)
which runs on a Macintosh G3 processor.

In the final design all the Kmax functions needed
to start or stop the data acquisition system, as well as
to transfer the recorded data for projection analysis,
are steered by a procedure running in the master
computer (PC). This computer will also process the
data in order to reconstruct the image. In the full
automated system the user will place the phantom
on the centre of the rotating table and will activate
the acquisition procedure. The system is then
responsible for taking all the planar images at the
predefined angles and for transferring the data to the
master host, where the ANN reconstruction proce-
dure occurs. The reconstructed image will appear on
a screen ready for any further manipulation.
3. Methodology—neural network architecture

In this section, the reconstruction problem is
defined in mathematical terms and the methodology
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used to define the ANN architecture is explained
in detail.

3.1. Problem definition

By using mechanical collimation, which only
allows nearly perpendicular incident photons, the
camera takes planar images of the activity
distribution in the phantom. These planar images
can be regarded as projection images of the
activity distribution. For simplicity reasons only
the two-dimensional version of the problem is
here regarded; any extension to a higher dimen-
sion requires only recurrence of the method. The
simple reconstruction problem is then described in
Fig. 2.

The image to be reconstructed is represented by
a square matrix n� n. The schematic diagram in
Fig. 2 shows the matrix projection at a given angle,
which normally corresponds to a strip of the
camera planar image taken for this angle. As a
simplification we suppose that at each angle
there is a constant number of strips, equal to n.
By totally recording m projections at different
angles the number of the known variables equals
to m� n, while a solution for the n� n elements of
the matrix is required. Although in the usual
tomographic problems an infinite number of
projections can be taken, restricted only by
the camera resolution, in our method the number
Fig. 2. Definition of the reconstruction procedure: The image

(square matrix n� n) has to be reconstructed from the m-

measured projections, each one with length n.
of the recorded planar images is kept small.
Consequently, this reduces the total number of
the fit parameters (weights) in the Neural Net-
work to the minimum possible, as it will be
explained below. Usually, n is of the order of
100 and m of the order of 10; thus the procedure
has to reconstruct the 100� 100 unknown matrix
elements from the 100� 10 measured projection
data.

3.2. ANN architecture—training

In this project, a reconstruction technique based
on ANN is introduced and tested. The software
package JETNET [5] has been used for the
network definition and training. This package
consists of FORTRAN (F77) subroutines with a
large number of adjustable parameters for perfor-
mance and error control of the network.

The ANN Architecture is schematically shown
in Fig. 3. The Input Layer comprises m� n nodes
supplied with the projection data. The recon-
structed image (n� n) is represented by the Output
Layer. The number of the hidden layers in our
study is varied from zero [6] to one or two hidden
layers. It has been proved out that more hidden
layers do not contribute to a better solution and
due to the increasing number of the free fit
parameters (more weights in the network) the
convergence of the procedure becomes unstable. In
all these variants the back-propagation (standard
gradient descent) updating procedure has been
applied.
Fig. 3. Network Architecture: The Input Layer comprises

m� n nodes supplied with the projection data. The recon-

structed image (n� n) is represented by the Output Layer.
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Fig. 5. Reconstruction results using a Neural Network

Architecture with two hidden layers. As in the previews Figure,

left is the original matrix for direct comparison.
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4. Image reconstruction results

In the following, image reconstruction results
based in the above described ANN technique will
be presented. These results are based on a
reconstruction of a 27� 27 matrix with 3 or 8
projections by varying the number of the hidden
layers. In Fig. 4 results are shown for a Network
Architecture with one hidden layer. To the left is
shown the original matrix for direct comparison
with the reconstructed one at the right of the
Figure. The network training has been performed
with a large number of 3D ellipsoids with variable
densities and widths randomly distributed in the
square matrix. This training sample is kept
constant until the network reaches a reasonable
learning level.

Similar results for a Network Architecture with
two hidden layers are presented in Fig. 5. It has
been shown that the network learning convergence
with two hidden layers is slower than in the
previous case. For more than two hidden layers
the training procedure becomes unstable. It is
clearly seen that the increasing number of the
projections improve the reconstruction result.

For small matrix dimensions there is a strong
relation between the optimum number of projec-
tions needed to reconstruct the image [6]. Exceed-
ing this number of projections the procedure does
Fig. 4. Reconstruction results using a Neural Network

Architecture with one hidden layer. Left is the original matrix,

right the reconstructed matrix after network training.

Fig. 6. Reconstruction results for more complicated test

patterns using the parameters of the trained network.
not any more significantly contribute to better
results.

A crucial parameter for the usage of this
technique is the CPU time consumed in the
training phase. Running on a Pentium-4 processor
at 2.4 GHz and using the two hidden layer
architecture (27� 27 matrix with 8 projections)
the time needed to train the network with 2000
patterns is about 10 s for each epoch. The
estimated time for a full training is about 2 h.

Although the learning phase requires a large
amount of input samples and a considerable CPU
time, the trained network is able to give immediate
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results. In order to test the relevance of the
described method, we require from the network
to reconstruct more complicated patterns. Fig. 6
shows such a typical network response to an input
matrix totally different from the ellipsoid pattern
sample used for training.

Future work of this project is focused on
extending and establishing the same procedure
on higher matrix dimension problems and training
with real SPECT data from the g-camera and the
phantom rotation system.
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