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Abstract—The idea presented here is based on the Newton-
Raphson root-finding methodology for localizing the minimum of
a function. The proposed algorithm follows the iterative approach
of the traditional Algebraic Reconstruction Technique (ART)
with the introduction of a new correction method, similar to the
Newton-Raphson scheme generalized to several dimensions. The
definition of the derivative in this method causes an acceleration
in the convergence speed, which results to a respectable drop
of the number of iterations needed to minimize the quadratic
deviation. The major issue was the definition of a Cost Function
and its first and second derivative, the equivalent root of which
would lead to the detection of the local minimum. This Cost
Function contains the squared difference of the measured and the
reconstructed projections in the appropriate matrix notation and
takes into account the derivatives with respect to neighborhood
rays and projection angles. Apart from the formalism, the quality
of the proposed reconstruction and its convergence speed with
respect to the traditional ART is discussed in this work.

I. INTRODUCTION

THE algebraic approach to image reconstruction from
projections consists basically of two iterative techniques:

the Algebraic Reconstruction Technique (ART) [1] and the
Simultaneous Iterative Reconstruction Technique (SIRT) [2].
ART-type methods are sequential in nature; they implement a
correction to the estimated image vector in such a way that
the updated estimate will satisfy a single ray-sum equation
representing a ray integral. SIRT-type methods are quadratic
optimization methods; in their approach they attempt to correct
for errors in all ray-sum equations simultaneously. The greatest
advantage of ART in the computed tomography is the ability
to produce better images than other methods from fewer
projections.

The original ART algorithm (sometimes referred to as
Additive ART) is the basis of many variants, developed to
improve various aspects not addressed by the original ART.
A simultaneous application of the error correction terms as
computed for all rays in a given projection was introduced as
the Simultaneous Algebraic Reconstruction Technique (SART)
[3]. To overcome the disadvantage that negative values appear
in the reconstruction, another variant, the Multiplicative ART
(MART) [4], can be used instead. Although MART algorithms
produce less error at convergence compared to Additive ART,
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Fig. 1. Schematic representation for the intensity calculation of the ray
Ri at a given angle from the Reconstructed Matrix Qj with the help of the
Projection Matrix Pij according to Equation (1).

they converge only at small values of their relaxation param-
eter.

In electron microscopy, where limitations of the field of
view and the contribution of scatter in the micrographs lead
to relatively large deviations from the cosine behaviour of the
tilt-angle, a Controlled Algebraic Reconstruction Technique
(CART) [5] has been developed. This algorithm stabilizes the
region of interest by dynamically scaling the input data during
the procedure and is therefore able to operate in such a way
that the central region, i.e., the object of interest is optimally
reconstructed.

In the reconstruction procedure the intensity of each ray
Ri at a given angle can be calculated from the Projection
Matrix Pij and the Reconstructed Matrix Qj . The Projection
Matrix Pij is a weighting matrix, which carries the information
of how much the jth element of the matrix being recon-
structed contributes to the ith-ray. The Reconstructed Matrix
Qj represents the unknown pattern of the planar image to be
reconstructed and has normally the shape of a square matrix
with dimension N × N , written in a vector (one-column)
matrix, so that:

Ri =
N2∑
j=1

Pij × Qj (1)

It is obvious that the index i runs in the interval i =
1, 2, . . . NP × NR, with NP the number of the projections
(angles) where the ray intensity is measured and NR the
number of the constant width rays per each projection, while
j = 1, 2, . . . N2 (Fig. 1).

The main task of every reconstruction procedure in the
computed tomography is to minimize the difference between
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the calculated Ri and the measured Si ray intensity. In the
following, the Algebraic Reconstruction Technique (ART), one
of the most basic iterative techniques, will be discussed with
respect to the minimization procedure based on the Newton-
Raphson scheme. It will be shown that a simple definition
of a Cost Function leads to the traditional form of the ART.
Then, taking into account the information of neighborhood
pixels, rays and projection angles, a new form of the Cost
Function will be proposed. Based on this extended function,
the improved version of the Newton-Raphson ART (NR-
ART) will be presented. Convergence speed and quality of the
reconstruction will be discussed in the case of simple software
phantoms.

II. NEWTON-RAPHSON SCHEME AND ART

In numerical analysis, the Newton-Raphson method uses the
iterative process

xk+1 = xk − f(xk)
f ′(xk)

(2)

to approach the root x of a real-valued function with a
quadratic convergence rate [6]. The method derives from the
Taylor expansion of the function around a point and requires
the evaluation of both, the function f(x) and its derivative
f ′(x). The same method can be used to locate extrema of a
function, since the stationary points x for the function f(x)
are roots of the first derivative f ′(x). In this case, a similar
iterative process applies

xk+1 = xk − f ′(xk)
f ′′(xk)

(3)

and the evaluation of both, the first and the second derivative of
the twice-differentiable function, is required. In optimization
problems this iterative scheme can be generalized to several
dimensions by replacing the derivative with the gradient,
∇f(x), and the reciprocal of the second derivative with the
inverse of the Hessian Matrix, Hf(x):

xk+1 = xk − [Hf(xk)]−1∇f(xk) (4)

Although there exist many methods to approximate the Hes-
sian Matrix, there are cases where the Hessian is close
to a non-invertible matrix and the whole process becomes
numerically unstable.

The image reconstruction problem in the computed to-
mography is an optimization problem: We try to minimize
the difference between the measured ray intensity Si and its
calculated value Ri by adjusting the elements Qj of the matrix
being reconstructed. In other words, we try to minimize a
Cost Function F which is defined through the difference of
measured-calculated ray at a given angle:

F (Qj) = F (Si − Ri) = F

⎛
⎝Si −

N2∑
j=1

PijQj

⎞
⎠ (5)

Therefore, the Newton-Raphson iterative process making use
of Equation (3) is given by the relation:

Qk+1
j = Qk

j − F ′(Qk
j )

F ′′(Qk
j )

(6)

Defining now the Cost Function as the quadratic difference
between measured and calculated ray intensity

F (Qk
j ) = (Si − Ri)2 =

⎛
⎝Si −

N2∑
j=1

PijQ
k
j

⎞
⎠

2

(7)

its first and second derivative can be evaluated as follows:

F ′(Qk
j ) =

∂F

∂Qk
j

= −2(Si − Ri)Pij (8)

F ′′(Qk
j ) =

∂F ′

∂Qk
j

= 2PijPij (9)

By substituting these results to Equation (6) and taking care
of the ray intensity normalization one obtains the relation

Qk+1
j = Qk

j +
Si − Rk

i

N2∑
j=1

PijPij

Pij (10)

which is the traditional algorithmic approach of the Algebraic
Reconstruction Technique.

It is clear from the analysis above that the Newton-Raphson
scheme with a Cost Function equal to the quadratic difference
of the measured and calculated ray intensity leads exactly to
the well known traditional ART.

III. THE EXTENDED COST FUNCTION

A possible extension of the Cost Function F will be dis-
cussed in this section. The main idea is to include additional
information in the function F , and consequently in the mini-
mization procedure, besides the central quadratic difference
(Si − Ri)2 and its derivatives with respect to the element
Qj under correction. As shown in the previous section, the
basic mechanism of the traditional ART, which is based on
this simple quadratic difference, lacks the ability to take into
account corrections dictated by at least the neighborhood
measured data. On the other hand, a heavily constructed
Cost Function with a lot of additional information will be
computationally non-efficient and it will probably lead to ART
variants already discussed elsewhere.

Having in mind all the previous considerations, an obvious
extension of the Cost Function has to include the most con-
tiguous elements which show a major sensitivity with respect
to the matrix element Qj , namely all possible elements that

absolutely maximize the gradient ∇F =
(

∂F
∂Qj

)
m

for different
directions m.

After a careful study of the problem, following three direc-
tions have been selected and included in the extended Cost
Function:

• Closest Pixels: Apart from the central element Qj under
correction the most closets pixels to it, Qj−1 and Qj+1,
is also expected to affect the correction. Therefore they
are added to the extended Cost Function and this extra
term is then expressed by the sum:

(Si − Ri)
2
j−1 + (Si − Ri)

2
j+1

• Closest Rays: It is natural to extend the information
originated by the two neighbor rays Ri−1 and Ri+1 with
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respect to the pixel Qj . The indexes are appropriately
limited in the range of the given projection and the extra
term in the Cost Function is formulated by the expression:

(Si−1 − Ri−1)
2
j + (Si+1 − Ri+1)

2
j

• Closest Projections: For a sufficient large number of
projections at different angles, it is expected that rays
of the neighborhood projections drastically influence the
reconstruction of the element Qj . It is therefore fair to
include in the Cost Function F rays from the previous
and the next angle-projection. Since the number of rays
per projection equals to NR, the corresponding ray in
the previous and next projection is respectively Ri−NR

and Ri+NR and the term added to F is:

(Si−NR − Ri−NR)2j + (Si+NR − Ri+NR)2j

All these terms of the extended Cost Function, grouped in
the three directional categories, are schematically represented
in Fig. 2.
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Fig. 2. Terms included in the extended Cost Function in a schematic
representation. They can be grouped in three different categories, indicated
as different directions in the gradient needed to construct the derivatives: (a)
Contribution from the neighbor pixels (b) Contribution from the closest rays
and (c) Contribution from the closest angle-projections. The exact expression
of the Cost Function is given by the Equation (11).

Summarizing all the extra added contributions to the Cost
Function F, its extended form can be now expressed as:

F (Qj) = (Si − Ri)
2
j + (Si − Ri)

2
j−1 + (Si − Ri)

2
j+1

+ (Si−1 − Ri−1)
2
j + (Si+1 − Ri+1)

2
j (11)

+ (Si−NR − Ri−NR)2j + (Si+NR − Ri+NR)2j

The first and the second derivative are calculated for each of
the terms above with respect to the element Qj of the matrix
being reconstructed. For a given ray with index m it can be
easily shown that:(

∂F

∂Qj

)
m

=
∂

∂Qj
(Sm − Rm)2j = −2(Sm − Rm)Pmj (12)(

∂2F

∂Q2
j

)
m

= 2PmjPmj (13)

Combining Equations (12) and (13) with the Newton-Raphson
scheme of Equation (6), the individual correction after the kth

iteration step for each term of the extended Cost Function is:

Xmj =
Sm − Rk

m

N2∑
j=1

PmjPmj

Pmj (14)

so that the totaly accumulated correction by all terms can be
expressed as:

Qk+1
j = Qk

j +
1
C

∑
mj

Xmj (15)

In the sum above and for the proposed Cost Function there
are altogether seven terms with:

(m, j) ∈ {(i, j − 1), (i, j), (i, j + 1)}
∪{(i − 1, j), (i + 1, j)} (16)

∪{(i − NR, j), (i + NR, j)}
The factor C plays the role of a normalization factor and is
directly dependent on the number of terms in the summation.

IV. ALGORITHMIC IMPLEMENTATION

The Newton-Raphson correction approach with the ex-
tended Cost Function as described in the previous section has
been implemented within the traditional iterative ART scheme.
The new algorithm, referred in the following as Newton-
Raphson Algebraic Reconstruction Technique (NR-ART), has
been tested with several software phantoms. Each group of
the contributing terms included in the extended Cost Function,
which is interpreted as a different direction in the gradient, can
be separately activated in the reconstruction procedure. It is
possible, therefore, to study quantitatively the partial effect of
these terms in the final results.

Software test patterns have been constructed in a square
matrix format with dimensions 64x64 and 128x128 and their
projections have been created for equidistant angle intervals
in the range (00 . . . 1800). In Fig. 3 the convergence of the
reconstruction procedure for a matrix with N=64 and for
two different sets, with 18 and 36 projections respectively, is
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Fig. 3. Convergence of the reconstruction procedure for a square matrix
phantom with N=64 for two different sets with 18 and 36 projections
respectively. The traditional ART scheme is directly compared with the
NR-ART scheme based on the here proposed extended Cost Function. The
evolution of the different contributing groups are separately plotted and
indicated with different color. The definition of the mean quadratic error σ is
given in Equation (17).

shown. The evolution of the mean quadratic error σ, defined
as:

σ =

√
rr∑

(Si − Ri)2

rr
with rr = NP × NR (17)

with the number of grand iterations in the reconstruction
procedure is plotted.

According to the plotted results for the three different
contributing groups defined in the extended Cost Function

Fig. 4. Convergence of the reconstruction procedure for a square matrix
phantom with N=128 for two different sets with 36 and 72 projections
respectively. Details are the same as in the previous Fig. 3.

following conclusion can be drawn:

• For small dimensions N of the Reconstructed Matrix
and for a small Number of Projections NP, although
the NR-ART scheme with only the central term shows
improved results, the terms in the extended Cost Function
don’t contribute significantly in the quality of the image
reconstruction.

• For a sufficient large Number of Projections NP, each
of the three groups in the extended function shows a
significant contribution at least after the first iteration. The
best results are obtained for the closest angle-projections
group (NR-ART + Next Angle) followed by the closest
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Fig. 5. NR-ART reconstruction of a software pattern consisting of 9 Gauss shaped ellipsoids with matrix dimension 64x64 and NP=36 projections covering
an equidistant angle range from 00 to 1800. The 3-dimensional pattern and its equivalent contour plot for the generated and the reconstructed image are
shown together for direct comparison.

rays group (NR-ART + Next Ray). The contribution of
the closest pixels (NR-ART + Next Pixel) is minimal and
it will be improved only in higher matrix dimensions, as
shown in Fig. 4.

• Activation of all correcting groups (NR-ART + ALL)
shows in general worse results than the closest angle-
projection group alone.

Similarly, in Fig. 4 the convergence of the reconstruction
procedure for a matrix with N=128 and for two different sets,
with 36 and 72 projections respectively, is shown.

Qualitative results of the here analyzed NR-ART scheme
are shown in Fig. 5. A software pattern created in a square
matrix form with N=64 and consisting of 9 Gauss shaped
ellipsoid of different sizes has been reconstructed from the
36 projections covering an equidistant angle range from 00

to 1800. The 3-dimensional pattern and its equivalent contour

plot for the generated and the reconstructed image are shown
for direct comparison in the same figure. Because of the
simplicity of the generated phantom and its symmetry, the
quality of the reconstruction is ideal and no optical differences
are identifiable.

Finally, the well known Shepp-Logan head phantom, which
consists of a number of ellipses of varying sizes and densities,
has been also reconstructed using the NR-ART approach.
The resulted image is shown in Fig. 6 together with the
original and the image reconstructed with the traditional ART
algorithm. The matrix size in this example was 128x128;
again a number of 36 equidistant projections in the angle
range (00 . . . 1800) have been used in the reconstruction. The
reconstruction convergence for many other, more complicated,
software phantoms has been studied in the context of the here
described methodology [7].
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Fig. 6. Reconstruction of the Shepp-Logan head phantom. Left is the original phantom, in the center the reconstructed with the traditional ART and right the
reconstructed with the NR-ART approach presented in this work. Matrix dimension is 128x128; 36 equidistant projections in the angle range (00 . . . 1800)
have been used in the reconstruction.

All tests have been performed on an 8-core Unix platform
with Xeon CPU running at 2.50 GHz. For the implementation
of the reconstruction algorithm the GNU-Compiler 2.6.9, ELF-
64 bit has been used. Measured CPU times for a grand iteration
on this platform are shown in the following table.

N x NP CPU-Time per Iteration
64 x 18 0.16 s
64 x 36 0.31 s

128 x 36 2.53 s
128 x 72 6.81 s

V. CONCLUDING REMARKS

In this work, the image reconstruction problem has been
discussed in the context of the optimization procedure. It
is shown that the Newton-Raphson algorithmic approach for
finding the stationary point of a Cost Function, which in
its simplest definition consists of the quadratic difference of
measured-calculated ray at a given angle, directly leads to the
traditional Algebraic Reconstruction Technique (ART). Based
on this fact, an extended Cost Function has been defined
in an economical way, taking into account all the possible
information from the closest pixels, rays and angle-projections
of the matrix element being reconstructed. This Newton-
Raphson ART scheme shows a significant improvement in the
convergence allowing a speedup of the whole reconstruction
procedure. The effect to the final reconstruction result for each
term of the extended Cost Function has been quantitatively
studied with simple software phantoms.
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