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* definition of the neutron EDM: first moment of the neutron charge distribution

 


dn ≡ d 3x x n∫ J 0 x( ) n J0 = time component of the

     e.m. current operator

 

- one has  

dn ∝


Sn , where 


Sn  is the neutron spin, and the same holds for its magnetic moment 

  µn ∝

Sn , so both moments have the same behavior under discrete space-time symmetries

 
 -

d ⋅

E   and  - µ ⋅


B 

- electric and magnetic dipole moments describe the response to an external e.m. field:

 
time reversal (T):        


S→ −


S           


E→


E           


B→ −


B        ⇒          


d ⋅

E→ −


d ⋅

E          µ ⋅


B→


µ ⋅

B

 
parity (P):        


S→


S             


E→ −


E         


B→


B          ⇒          


d ⋅

E→ −


d ⋅

E          µ ⋅


B→


µ ⋅

B

a non-vanishing EDM signals the breaking of P and T symmetries (Landau ‘57), while a non-
vanishing magnetic moment does not*
* P-violation is very well known because of the weak interaction (the V-A structure)
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* CP-violation (or T-violation assuming the CPT theorem) is also known to occur in nature:
   - kaon (‘64), B-meson (‘01) and D-meson (‘07) decays (direct and indirect CP-violations);
   - baryon-antibaryon asymmetry.

* The celebrated KM mechanism (the phase in the CKM matrix) may account for the observed
CP-violations in mesons, but it cannot explain the baryon-antibaryon asymmetry

the search for a non-vanishing nEDM is of particular relevance to unravel
the mechanism(s) of CP violation

* Experimental methods to measure the nEDM:

1) direct way: storing of ultracold polarized neutrons;

2) indirect way: measurement of the nuclear Schiff moment (via atomic EDMs).

the EDM is measured by determining the Larmor frequency ν of the spin-precession
process under uniform E and B fields:

hν = 2µB ± 2dE                 ± ⇒ B and E ↑↑ or ↑↓
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* present upper bound (ILL of Grenoble, Baker et al. PRL ‘06) :

dn < 2.9 ×10−26e ⋅ cm        (90% C.L.)

the bound turns out to be enough small to act as an important constraint on CP-violations in
the SM as well as in New Physics models*

* future perspective: the nEDM experiment (Cooper and Lamoreaux, spokespersons) at ORNL

- it is expected to lower the upper bound on dn by two orders of magnitude;

- it is expected to be operative in 2013.

* the determination of the electron EDM is also of great importance:

SM : de < 10−38e ⋅ cm                   [Barr ('93)]

exp. : de < 4 ⋅10−27e ⋅ cm               [Commins et al. ('94)]
NP effects are needed !
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Sources of CP violation

* Electroweak Lagrangian in the SM:

ve
e

⎛
⎝⎜

⎞
⎠⎟ L

,        
vµ
µ

⎛
⎝⎜

⎞
⎠⎟ L

,        
vτ
τ
⎛
⎝⎜

⎞
⎠⎟ L

;        eR , µR , τ R- leptons:

u
d

⎛
⎝⎜

⎞
⎠⎟ L

,         
c
s

⎛
⎝⎜

⎞
⎠⎟ L

,         
t
b

⎛
⎝⎜

⎞
⎠⎟ L

;        uR , dR , cR , sR , tR , bR- quarks:

- gauge bosons:
 


W , B( )

- scalars: Φ =
φ+

φ 0

⎛

⎝⎜
⎞

⎠⎟
,         Φ† =

φ−

φ 0*

⎛

⎝⎜
⎞

⎠⎟

interaction of fermions
with gauge bosons

Lew = LG f ,W ,B( ) + LH f ,Φ( )

interaction of fermions
with Higgs scalars
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after spontaneous breaking of the SUw(2) ⊗ UY(1) symmetry and through the Higgs mechanism,
both fermions and gauge bosons (as well as the neutral Higgs scalar) acquire mass

- quark sector: LH f ,Φ( ) SSB⎯ →⎯ − uL
i Mij

UuR
j

i, j=1

3

∑ − dL
iMij

DdR
j

i, j=1

3

∑ + h.c.+ ...

uL
phys = VL

upuL →VL
up

uL
cL
tL

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ,    dL

phys = VL
downdL →VL

down

dL
sL
bL

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ,     uR

phys = VR
upuR ,     dR

phys = VR
downdR

LH f ,Φ( ) SSB⎯ →⎯ − mje
iζ qL

jqR
j +

j=1

6

∑ h.c.+ ...

*

LG f ,W ,B( ) SSB⎯ →⎯ LNC + LCC
LNC = e qi Qi γ

µAµ +
1

cosθW sinθW
T3i −Qi sin

2θW( )γ µZµ
⎡

⎣
⎢

⎤

⎦
⎥qi

i=1

6

∑

LCC =
e

2 sinθW
JCC

µ Wµ
+ + h.c.

⎧

⎨
⎪
⎪

⎩
⎪
⎪

JCC
µ = u c t( )γ µ VCKM

d
s
b

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
L

            VCKM = VL
up VL

down( )†

CP conservation
ζ = 0

VCKM = VCKM( )*
⎧
⎨
⎪

⎩⎪
(LNC conserves CP)

(LNC is flavor diagonal according to GIM)

T3i = ±1 2 for L doublets
T3i = 0 for R fermions
Qi = electric charge

⎧
⎨
⎪

⎩⎪
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- for two quark families VCKM can be made real ⇒ no CP violation

- for three (or more) families VCKM may contain a phase and therefore it may not be real:

VCKM = R23 θ23,0( ) R13 θ13,δCKM( ) R12 θ12 ,0( )

 

VCKM( )Wolfenstein =
1− λ2 2 λ Aλ 3 ρ − iη( )

−λ 1− λ2 2 Aλ2

Aλ 3 1− ρ − iη( ) −Aλ2 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  +O λ 4( )               λ  sinθC

* the phase δCKM can generate an EDM for free quarks via loop effects:

1-loop                                                                2-loop

self-conjugate ⇒ no EDM VCKM (VCKM)† =1 ⇒ no EDM
[Shabalin (‘80)]

PDG (‘07)

Cabibbo angles: n (n-1) / 2
phases: (n-1) (n-2) / 2
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* the CKM mechanism for CP violation can generate an EDM for free quarks only at three loops:

 

dd  −10
−34 e ⋅ cm @md = 10 MeV( )

du  −10
−35 e ⋅ cm @mu = 5 MeV( )

⎧
⎨
⎪

⎩⎪
Czarnecki & Krause (‘97)

assuming a non-relativistic SU(6) wave function
for the three valence quarks in the neutron dn =

4
3
dd −

1
3
du

δCKM ≠ 0 ⇒ dn ≈ 10−34 e ⋅ cm
8 orders of magnitude below

the exp. upper bound !

* for bound quarks there is a 2-loop contribution [Nanopoulos et al. (‘79)] :

dn ≈ 10−32 e ⋅ cm still 6 orders of magnitude
below the exp. upper bound !

(KS, L → 2π)

∝Vtd
*VtsVus

*Vud
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* electroweak θ-term:

LH f ,Φ( ) SSB⎯ →⎯ − mje
iζ qL

jqR
j +

j=1

N f

∑ h.c.                ζ= 1
Nf

Arg Det M[ ]

- the phase ζ can be eliminated by a singlet chiral rotations of the quark fields

q x( )→ ′q x( ) = 1+ iα
2
γ 5

⎛
⎝⎜

⎞
⎠⎟
q x( )

q x( )→ ′q x( ) = q x( ) 1+ iα
2
γ 5

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

- the measure of path integrals is not invariant [Fujikawa (‘79)]

 
D ′q D ′q → Dq Dq e

iN fα d4 x
gs
2

32π 2
Gµν
a Ga ,µν∫

 

Gµν
a = gluon field tensor

Ga,µν =
1
2
ε µνρσGρσ

a

(α = − ζ)

 

′qL ,R x( ) = 1 iα
2

⎛
⎝⎜

⎞
⎠⎟
qL ,R x( )

′qL ,R x( ) = qL ,R x( ) 1± iα
2

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

- real quark mass matrix, but presence of a θ-term:

 

L ζ( )→ L ζ = 0( ) −θew
gs
2

32π 2 Gµν
a Ga,µν

θew= N fζ = Arg Det M[ ]
it violates CP and P
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* strong θ-term:
 

LQCD θQCD( ) = LQCD θQCD = 0( ) +θQCD gs
2

32π 2 Gµν
a Ga,µν

- equations of motion do not change because
 

gs
2

32π 2 Gµν
a Ga,µν = ∂µK

µ

- however
 

d 4x
gs
2

32π 2 Gµν
a Ga,µν∫ ≠ 0 because of non-trivial gauge configurations

 

Q ≡ d 4x
gs
2

32π 2 Gµν
a Ga,µν∫ Index Theorem⎯ →⎯⎯⎯⎯ ν+ −ν−- topological charge:

physical effect: CP-violation ⇒  nEDM ≠ 0

(Kµ gauge-variant)

- addition in the action of  the θ-term, θ Q , with θ = θQCD −θew = θQCD − ArgDet M[ ]

vacuum = θ = eiQθ Q
Q=0,±1,±2,...
∑ the value of θ is not

determined by the theory

- using (rough) estimates from quark model [Baluni (‘79)] and ChPT [Crewther et al. (‘79)], one has:

dn < 2.9 ×10−26e ⋅ cm θ < 10−10 the strong CP problem

ν±= number of zero modes of
       the Dirac operator with ±
       chiralities
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* possible proposed solutions for the strong CP problem:

- mu = 0 [Kaplan and Manohar (‘86)]

- additional U(1) chiral symmetry spontaneously broken: axions [Peccei and Quinn (‘77)]

- inconsistent with low energy spectrum of QCD [Leutwyler (‘96)]

- not yet detected by experiments

- CP is a symmetry spontaneously broken at some scale

- at a low scale (ew) presence of large FCNC

- at a large scale (Plank) elusive effects at the hadron scale

- …
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* CP violation in NP models

- general form of the CP-violating effective Hamiltonian

Heff = Ce
i µ( )Oe

i µ( )
i=1

N f

∑ + Cc
i µ( )Oc

i µ( )
i=1

N f

∑ + CG µ( )OG µ( ) + ...
possible four fermion

operators suppressed by tanβ

 

electric:    Oe
i = −

i
2
eQimi qiσ

µνγ 5qi Fµν

chromo-electric:    Oc
i = −

i
2
mi qiσ

µνγ 5t
aqi Gµν

a

gluonic:    OG = −
1
3
f abcGµλ

a Gν
b,λ

µν
c Gc,µν

[Weinberg (‘89)]

- RGE’s for the Wilson coefficients:
 

d

C

d lnµ
=
α s µ( )
4π

γ 0( ) C
anomalous dimensions

- evolution of Oe and Oc similar to the one of O7 and O8 in b → sγ

- evolution of OG calculated by Braaten et al. (‘90)

* contributions to Ce, Cc and CG at the high scale µ may start at 1-loop level
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* LO anomalous dimensions

γ 0( ) =
γ e 0 0
γ ce γ c 0
0 γ Gc γ G

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

8CF 0 0
8CF 16CF − Nc 0
0 −2Nc Nc + 2N f + 2β0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

CF =
4
3

β0 =
11
3
Nc −

2
3
N f

⎧

⎨
⎪⎪

⎩
⎪
⎪

- the Wilson coefficients Ce, Cc and CG are calculable in the given NP model at a high scale µ
   and then evolved down to the hadronic scale µH

Ce µH( ) = ηγ e 2β0Ce µ( ) + γ ce

γ e − γ c

ηγ e 2β0 −ηγ c 2β0( )η−1 2 Cc µ( )
gs µ( ) +

+γ Gcγ ce
ηγ e 2β0

γ e − γ c( ) γ e − γ G( ) +
ηγ c 2β0

γ e − γ c( ) γ G − γ c( ) +
ηγ G 2β0

γ e − γ G( ) γ c − γ G( )
⎡

⎣
⎢

⎤

⎦
⎥η−1 2 CG µ( )

gs µ( )

Cc µH( ) = ηγ c 2β0Cc µ( ) + γ Gc

γ c − γ G

ηγ c 2β0 −ηγ G 2β0( )CG µ( )

Cc µH( ) = ηγ G 2β0Cc µ( )

* γe, γc and γG > 0    ⇒    the CP-violating effects are suppressed from high to low scales
[Degrassi et al. (‘05)]

η ≡
α s µ( )
α s µH( )
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- what should be calculated non-perturbatively:

n Oe
i µH( ) n , n Oc

i µH( ) n , n OG µH( ) n

- estimates only from QCD sum rules [Pospelov et al. (‘01), (‘03)], chiral Lagrangians [Pich and
   de Rafael (‘91), Hisano and Shimizu (‘04)] and quark model [Faessler et al. (‘06)] exist to date

- many NP analyses still adopts the simple SU(6) model for the nucleon

dn =
4
3
dd −

1
3
du (effects of ds are neglected)

electric: dn
e = −

2
9
e mu µH( )Ce

u µH( ) + 2md µH( )Ce
d µH( )⎡⎣ ⎤⎦

chromo-electric: dn
c =

e
4π

mu µH( )Cc
u µH( ) + md µH( )Cc

d µH( )⎡⎣ ⎤⎦

gluonic: dn
G =

e
4π

ΛχCG µH( )

- naïve dimensional analysis [Manohar and Georgi (‘84)]

 
Λχ  1GeV⎡⎣ ⎤⎦
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* the electroweak sector in the SM and in NP models contains sources of CP violation:
- the phase in the CKM matrix is able to account for the observed CP-violation in
  mesons, but it produces contributions to the electric dipole moment of the neutron
  and the electron which are several orders of magnitude less than present experimental
  bounds;
- the contributions from NP starts at one-loop level and may be quite large, so that
  present experimental bounds on the neutron and electron EDM represent important
  constraints on the NP parameters.

Brief Summary

* at variance with the case of the electron, the neutron EDM may receive an important
   contribution from the so-called θ-term
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LATTICE QCD

- it is a non-perturbative approach based on our fundamental field theory of the strong interaction

- three limits of the results of lattice simulations should be performed:
1) the continuum limit (lattice spacing → 0);
2) the infinite volume limit;
3) the chiral limit in the u and d quark masses.

- full QCD simulations has to be unquenched (inclusion of sea quark effects)

- at the last Lattice Conference in Regensburg the results presented by several collaborations
   have been very impressive:

1) simulations with 2 and 2+1 dynamical quarks;
2) mu,d down to ~ ms / 6 ⇒  pion masses down to 250 - 300 MeV;
3) large volumes up to L ~ 3 fm and lattice spacings fine as ~ 0.08 - 0.1 fm;
4) uncertainties almost dominated by systematical and not by statistical errors.
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- as for nEDM the tasks for the lattice community is well defined and apparently simple:

 

1) the matrix element of the quark electric dipole operator: n qσ µνγ 5q n Fµν
2) the matrix element of the quark chromo-electric dipole operator: n qσ µνγ 5t aGµν

a q n

3) the matrix element of the Weinberg operator: n f abcGµλ
a Gν

b,λ Gc,µν n
4) the nEDM generated by a θ-term in the action.

- no lattice results for the first three tasks are available (in particular unquenched results)

msg for the lattice community: start calculating the matrix elements of the three
bare operators and start thinking how to perform a non-perturbative renormalization

* lattice strategies to calculate the nEDM induced by the θ-term:

1) measure the energy difference between spin-up and spin-down neutrons in presence
         of a uniform and static external electric field;

2) measure the CP-odd e.m. form factor F3(q2);

3) evaluate disconnected insertions of the singlet pseudo-scalar density.
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* the first strategy involves the calculations of 2-point correlation functions at zero momentum:

 

Gαβ
N t( ) = Nα

x, t( ) Nβ 0( )
x
∑ t→∞⎯ →⎯⎯ ZNe−mN t 1+ γ 4( )αβ

Nα x( ) =  nucleon interpolating field → ε abc daTCγ 5u
b( )dαc α, β = Dirac indexes

- application of a static and uniform external electric field in Minkowski space [Shintani et al. (‘07)]

it corresponds in Euclidean space-time to a redefinition of the gauge links

 
Ui x( )→ Ui x; Ei( ) = eeqEit Ui x( )

- turning on the θ-term:

 
mN

↑ θ( ) − mN
↓ θ( ) = 2


dN ⋅

E +O E 3( ) (O.K. for small E)

 

Gαβ
N t;


E;θ( ) = Nα

x, t( ) Nβ 0( )eiθQ
U→ U


E( )x

∑
reweighting factor
O.K. for θ small

- extraction of dN:
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* lattice evaluation of the topological charge

- fermionic definition: Q = ν+ - ν- , applicable for fermions with exact chiral symmetry
   (like, overlap fermions)

- gluonic definition:

 

Q ≡ d 4x
gs
2

32π 2 Gµν
a Ga,µν∫

lattice⎯ →⎯⎯
5
3
Qplaquette −

1
12
Qrectangular +O(a

2g2 , a3)

* cooling method [Teper (‘85)]:
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* quark mass dependence of dn

- ChPT at NLO [Crewther et al. (‘79), O’Connell and Savage (‘06)]:

 
LπNN = π ⋅N


τ iγ 5gπNN + gπNN⎡⎣ ⎤⎦N

gπNN ∝θ m
1
m

=
1
mu

+
1
md

+
1
ms

⎧
⎨
⎪

⎩⎪

- leading non-analytic term: dn ∝θ m ln mu + md( ) mu ,d →0⎯ →⎯⎯ 0 (full QCD)

- partially quenched QCD: dn ∝θ msea lnmvalence mvalence→0  at msea fixed⎯ →⎯⎯⎯⎯⎯⎯ ∞

(‘06)- quenched approx.: dn ∝ m− p

Instanton Liquid Model →

huge differences between the chiral
behavior of quenched and full simulations
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ChPT

quenched QCD is unreliable for the nEDM

quenched QCD:
Clover fermions
a-1 ~ 1.9 GeV (a ~ 0.1 fm)
V*T = 243*64
1.5 < Mn (GeV) < 2
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* finite volume effects in ChPT at NLO [O’Connell and Savage (‘06)]:

δ =
dn
L

dn
∞

 
mπL  1

- large volume effects:        a ~ 0.1, V ⋅T = 323 ⋅64 → L ~ 3 fm

δ ~ 10% @mπ ~ 250 MeV
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* determination of the CP-odd form factor F3(q2) [Shintani et al. (‘05), Berruto et al. (‘06)]

- matrix elements of the nucleon e.m. current: ′p , ′s Je.m.
µ p, s = u ′p , ′s( )Γµu p, s( )

Γµ = γ µF1 q
2( ) + i

2M
σ µνqνF2 q

2( ) +
+ γ µq2 − γ ⋅q qµ( )γ 5FA q2( ) +
+
1
2M

σ µνqνγ
5F3 q

2( )

Lorentz, gauge invariance
and CPT

F1, F2 = Dirac and Pauli form factors (P-even and T-even)
FA = anapole form factor (P-odd)
F3 =  pseudo-tensor form factor (T-odd)

dN =
e
2M

F3 q
2 = 0( )

- the point at q2 = 0 is not directly accessible: F3(0) should be obtained by extrapolation of the
   q2-dependence of F3(q2);
- calculations of 2- and 3-point correlation functions at various nucleon momenta  is required;

 

Vαβ
µ tx ,ty;

p, ′p( ) = Nα
y,ty( ) Je.m.µ x, tx( )Nβ 0( ) e− i

p− ′p( )⋅ xe− i ′p ⋅y

x , y
∑

tx , ty − tx( )→∞
⎯ →⎯⎯⎯⎯ ZNe− ′E tx e−E ty − tx( ) i ′p ⋅ γ + M

2 ′E
⎛
⎝⎜

⎞
⎠⎟αρ

Γµ( )ρσ
ip ⋅ γ + M
2E

⎛
⎝⎜

⎞
⎠⎟ σβ

- in the absence of the θ-term:
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Nf = 2 dynamical flavors
domain-wall fermions
a-1 ~ 1.7 GeV (a ~ 0.12 fm)
V*T = 163*32    (Ls = 12)
Mn ~ 1.5 GeV

dn < 0.02 e ⋅ fm ~ 4 dn ChPT

encouraging result to be improved

non-periodic boundary conditions
on the fermion fields

 

Vαβ
µ tx ,ty;

p, ′p( ) = Nα
y,ty( ) Je.m.µ x, tx( )Nβ 0( ) iθQ e− i

p− ′p( )⋅ xe− i ′p ⋅y

x , y
∑- at first order in θ:

Berruto et al. (‘06)

 
V µ  depends on all the four form factors delicate subtraction procedure to extract F3

p= 2π
L
n ⇒ q2 ≥ 0.4 GeV 2

periodic boundary conditions

q2 ~ 0.05 GeV 2
lattice evaluation of Fπ (q2)
by the ETM Collaboration

(S.S. in Proc. of Lattice ‘07)



25

* method of disconnected insertions of the singlet pseudo-scalar density [Guadagnoli et al. (‘04)]

 


dn = −iθ gs

2

32π 2 d 3y y∫ N Je.m.
0 y( ) d 4x G G x( )∫ N

- treating the θ-term as a perturbation at first order, the nEDM in Euclidean space reads as

N  stands for N θ=0( )

- the idea is to work out the equivalence under a singlet chiral rotation between the insertion of
   the θ-term (a gluonic operator) and that of the singlet PS density (a fermion operator)

 


dn ?⎯→⎯ iθm d 3y y∫ N Je.m.

0 y( ) d 4x PS x( )∫ N
1
m

=
1
3

1
mu

+
1
md

+
1
ms

⎛
⎝⎜

⎞
⎠⎟

PS =
1
3
uγ 5u + dγ 5d + sγ 5s( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

connected insertions disconnected insertions

(a) = 0
[Aoki et al. (‘90)]

γ5 insertion
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- vacuum expectation value of a generic operator O (in Euclidean space)

O x1,..., xn( ) =
1
Z

d G[ ]d ψ[ ]∫ d ψ[ ]O x1,..., xn( ) e−S Z = d G[ ]d ψ[ ]∫ d ψ[ ] e−S
S =  QCD action

′ψ x( ) = 1+ iα x( )γ 5( )ψ x( )
′ψ x( ) =ψ x( ) 1+ iα x( )γ 5( )

⎧
⎨
⎪

⎩⎪
- singlet chiral rotation:

- axial WI:

 

O
δS

δ iα x( )( ) =
δO

δ iα x( )( )

O
δS

δ iα x( )( ) = −∂µ OAS
µ x( ) + O M ,λ0{ }ψ x( )γ 5ψ x( ) + 2N f

gs
2

32π 2 OG G x( )

 

2N f
gs
2

32π 2 d 4x OG G x( )∫ = δ O[ ] − 2m d 4x OPS x( )∫

- relevant operator: O = Nα z( )Je.m.0 y( )Nβ 0( )
Nα = ε abc daTCγ 5u

b( )dαc
Je.m.
0 = eu uγ

0u + ed dγ
0d + es sγ

5s
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- diagrams generated by the insertion of the PS density

(c) = 0
(d) cancels out δ[O]
(e) = 0

 

2N f
gs
2

32π 2 d 4x OG G x( )∫ = −2m d 4x OPS x( )⎡⎣ ⎤⎦disc. (a) + OPS x( )⎡⎣ ⎤⎦disc. (b){ }∫

δ O[ ] = δ Nα[ ] z( )Je.m.0 y( )Nβ 0( ) + Nα z( )δ Je.m.
0⎡⎣ ⎤⎦ y( )Nβ 0( ) + Nα z( )Je.m.0 y( )δ Nβ⎡⎣ ⎤⎦ 0( )

- diagrams generated by the chiral variation of O

- final result:

γ0 insertion
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- disconnected diagrams are noisy on the lattice

- important, recent algorithm improvements [see C. Michael and C. McNeile in Proc. of Lattice ‘07]

u,d quarks

s quark

γ0 insertion

γ5 insertion

(b) = 0
in the SU(3) limit
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CONCLUSIONS

* the electroweak sector in the SM and in NP models contains sources of CP violation:
- the phase in the CKM matrix is able to account for observed CP-violations in mesons,
  but it produces contributions to the electric dipole moment of the neutron and the
  electron which are several orders of magnitude less than present experimental
  bounds;
- the contributions from NP starts at one-loop level and may be quite large, so that
  present experimental bounds on the neutron and electron EDM represent important
  constraints on the NP parameters;
- the task for the lattice community is to start calculations of the matrix elements of
  three operators:

* a non-vanishing value of the electric dipole moment of stable particles is a signal of breaking of
   parity and time-reversal symmetry, and therefore of CP symmetry assuming the CPT theorem

 

1) the quark EDM:    n qσ µνγ 5q n Fµν
2) the quark chromo-EDM:    n qσ µνγ 5t aGµν

a q n

3) the Weinberg term:    n f abcGµλ
a Gν

b,λ Gc,µν n

* at variance with the case of the electron, the neutron EDM may receive an important
   contribution from the so-called θ-term

 

θ gs
2

32π 2 Gµν
a Ga,µν
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* three strategies have been developed to calculate the nEDM induced by the θ-term on the lattice:

1) measure the energy difference between spin-up and spin-down neutrons in presence
         of a uniform and static external electric field;

2) measure the CP-odd e.m. form factor F3(q2);

3) evaluate disconnected insertions of the singlet pseudo-scalar density.

* results at low pion masses (~ 250 ÷ 300 MeV) are expected to come in the next few years

* warnings from ChPT at NLO:

- the quark mass dependence may be totally different between quenched, partially quenched

  and full QCD;

- volume effects may be quite large.

* the results so far obtained are quite encouraging


