Towards the QCD spectrum using a space-time lattice

Colin Morningstar (Carnegie Mellon University) 7th European Conference on Electromagnetic Interactions with Nucleons and Nuclei Milos Island, Greece September 10, 2007

September 10, 2007

Lattice Hadron Physics Collaboration

- charge from Nathan Isgur to use Monte Carlo method to extract the spectrum of baryon resonances (Hall B at JLab)
- formed the Lattice Hadron Physics Collaboration (LHPC)
- acquired funding through DOE SciDAC to build large computing cluster at JLab (also at Fermilab and Brookhaven), develop software
- LHPC has several broad goals
 - □ compute QCD spectrum (baryons, mesons,...)
 - □ hadron structure (form factors, structure functions,...)
 - □ hadron-hadron interactions
- current members of spectroscopy effort:
 - John Bulava, Robert Edwards, George Fleming, Justin Foley, Jimmy Juge, Adam Lichtl, CM, David Richards, Steve Wallace

LHPC spectroscopy efforts

- extracting spectrum of resonances is big challenge!!
 - need sets of extended operators (correlator matrices)
 - multi-hadron operators needed too
 - □ deduce resonances from finite-box energies
 - \Box anisotropic lattices $(a_t < a_s)$
 - □ inclusion of light-quark loops at realistically light quark mass
- long-term project
- this talk is a brief status report
 - operator construction
 - smearing and pruning, selection of operators
 - initial results
 - use of stochastic all-to-all quark propagators

Energies from correlation functions

- stationary state energies extracted from asymptotic decay rate of temporal correlations of the fields (imaginary time formalism)
- evolution in Heisenberg picture $\phi(t) = e^{Ht} \phi(0) e^{-Ht}$ (*H* = Hamiltonian)
- spectral representation of a simple correlation function
 - □ assume transfer matrix, ignore temporal boundary conditions
 - focus only on one time ordering $\langle 0 | \phi(t)\phi(0) | 0 \rangle = \sum_{n} \langle 0 | e^{Ht}\phi(0) e^{-Ht} | n \rangle \langle n | \phi(0) | 0 \rangle$ insert complete set of energy eigenstates (discrete and continuous) $= \sum_{n}^{n} |\langle n | \phi(0) | 0 \rangle|^2 e^{-(E_n - E_0)t} = \sum_{n} A_n e^{-(E_n - E_0)t}$ extract A_1 and $E_1 - E_0$ as $t \to \infty$

(assuming $\langle 0|\phi(0)|0\rangle = 0$ and $\langle 1|\phi(0)|0\rangle \neq 0$)

September 10, 2007

Effective mass

- the "effective mass" is given by $m_{\text{eff}}(t) = \ln \left(\frac{C(t)}{C(t+1)} \right)$
- notice that (take $E_0 = 0$) $\lim_{t \to \infty} m_{\text{eff}}(t) = \ln\left(\frac{A_1 e^{-E_1 t} + A_2 e^{-E_2 t} + \cdots}{A_1 e^{-E_1 (t+1)} + \cdots}\right) \to \ln e^{E_1} = E_1$
- effective mass tends to the actual mass (energy) asymptotically
- effective mass plot is convenient visual tool to see signal extraction
 - □ seen as a plateau
- plateau sets in quickly for good operator
- excited-state
 contamination before
 plateau

Reducing contamination

- statistical noise generally increases with temporal separation *t*
- effective masses associated with correlation functions of simple local fields often do <u>not</u> reach a plateau before noise swamps the signal
 need better operators
 - better operators have reduced couplings with higher-lying contaminating states
- recipe for making better operators
 - crucial to construct operators using *smeared* fields
 - link variable smearing
 - quark field smearing
 - spatially extended operators
 - □ use large *set* of operators (variational coefficients)

Principal correlators

- extracting excited-state energies described in
 - □ C. Michael, NPB **259**, 58 (1985)
 - □ Luscher and Wolff, NPB **339**, 222 (1990)
- can be viewed as exploiting the variational method
- for a given $N \times N$ correlator matrix $C_{\alpha\beta}(t) = \langle 0 | O_{\alpha}(t) O_{\beta}^{+}(0) | 0 \rangle$ one defines the N principal correlators $\lambda_{\alpha}(t,t_0)$ as the eigenvalues of $C(t_0)^{-1/2} C(t) C(t_0)^{-1/2}$

where t_0 (the time defining the "metric") is small

- can show that $\lim_{t\to\infty} \lambda_{\alpha}(t,t_0) = e^{-(t-t_0)E_{\alpha}} (1+e^{-t\Delta E_{\alpha}})$ N principal effective masses defined by $m_{\alpha}^{\text{eff}}(t) = \ln\left(\frac{\lambda_{\alpha}(t,t_0)}{\lambda_{\alpha}(t+1,t_0)}\right)$ now tend (plateau) to the N lowest-lying stationary-state energies

Unstable particles (resonances)

- our computations done in a periodic box
 - momenta quantized
 - □ discrete energy spectrum of stationary states → single hadron, 2 hadron, ...

- scattering phase shifts → resonance masses, widths (in principle) deduced from finite-box spectrum
 - **B**. DeWitt, PR **103**, 1565 (1956) (sphere)
 - □ M. Luscher, NPB**364**, 237 (1991) (cube)
- more modest goal: "ferret" out resonances from scattering states
 - must differentiate resonances from multi-hadron states
 - avoided level crossings, different volume dependences
 - □ know masses of decay products → placement and pattern of multi-particle states known
 - □ resonances show up as extra states with little volume dependence

Operator design issues

- must facilitate spin identification
 - shun the usual method of operator construction which relies on cumbersome continuum space-time constructions
 - focus on constructing operators which transform irreducibly under the symmetries of the lattice
- one eye on maximizing overlaps with states of interest
- other eye on minimizing number of quark-propagator sources
- use building blocks useful for baryons, mesons, multi-hadron operators

Three stage approach (PRD72:094506,2005)

- concentrate on baryons at rest (zero momentum)
- operators classified according to the irreps of O_h

 $G_{1g}, G_{1u}, G_{2g}, G_{2u}, H_g, H_u$

- (1) basic building blocks: smeared, covariant-displaced quark fields $(\widetilde{D}_{j}^{(p)}\widetilde{\psi}(x))_{Aa\alpha}$ *p*-link displacement (*j* = 0,±1,±2,±3)
- (2) construct elemental operators (translationally invariant)
 B^F(x) = φ^F_{ABC}ε_{abc}(D̃^(p)_iψ̃(x))_{Aaα}(D̃^(p)_jψ̃(x))_{Bbβ}(D̃^(p)_kψ̃(x))_{Ccγ}

 flavor structure from isospin, color structure from gauge invariance
- (3) group-theoretical projections onto irreps of O_h $B_i^{\Lambda\lambda F}(t) = \frac{d_\Lambda}{g_{O_h^D}} \sum_{R \in O_h^D} D_{\lambda\lambda}^{(\Lambda)}(R)^* U_R B_i^F(t) U_R^+$ • wrote Grassmann package in Maple to do these calculations

Three-quark elemental operators

• three-quark operator

$$\Phi^{ABC}_{\alpha\beta\gamma,ijk}(t) = \sum_{\vec{x}} \varepsilon_{abc} (\tilde{D}^{(p)}_{i} \tilde{\psi}(\vec{x},t))^{A}_{a\alpha} (\tilde{D}^{(p)}_{j} \tilde{\psi}(\vec{x},t))^{B}_{b\beta} (\tilde{D}^{(p)}_{k} \tilde{\psi}(\vec{x},t))^{C}_{c\gamma}$$

• covariant displacements

 $\tilde{D}_{j}^{(p)}(x,x') = \tilde{U}_{j}(x) \tilde{U}_{j}(x+\hat{j}) \cdots \tilde{U}_{j}(x+(p-1)\hat{j}) \delta_{x',x+p\hat{j}} \quad (j = \pm 1, \pm 2, \pm 3)$ $\tilde{D}_{0}^{(p)}(x,x') = \delta_{x',x}$

Baryon	Operator
Δ^{++}	$\Phi^{uuu}_{\pmb{lpha}\pmb{eta}\pmb{\gamma},ijk}$
Σ^+	$\Phi^{uus}_{lphaeta\gamma,ijk}$
N^+	$\Phi^{uud}_{\alpha\beta\gamma,ijk} - \Phi^{duu}_{\alpha\beta\gamma,ijk}$
Ξ^0	$\Phi^{ssu}_{lphaeta\gamma,ijk}$
Λ^0	$\Phi^{uds}_{\alpha\beta\gamma,ijk} - \Phi^{dus}_{\alpha\beta\gamma,ijk}$
Ω^{-}	$\Phi^{sss}_{\alpha\beta\gamma,ijk}$

September 10, 2007

Incorporating orbital and radial structure

- displacements of different lengths build up radial structure
- displacements in different directions build up orbital structure

- operator design minimizes number of sources for quark propagators
- useful for mesons, tetraquarks, pentaquarks even!
- can even incorporate hybrid meson operators

Enumerating the three-quark operators

lots of operators (too many!)

	Δ^{++}, Ω^{-}	Σ^+, Ξ^0	N^+	Λ^0
Single-site	20	40	20	24
Singly-displaced	240	624	384	528
Doubly-displaced-I	192	572	384	576
Doubly-displaced-L	768	2304	1536	2304
Triply-displaced-T	768	2304	1536	2304
Triply-displaced-O	512	1536	1024	1536

September 10, 2007

Spin identification and other remarks

• spin identification possible by pattern matching

J	$n_{G_1}^J$	$n_{G_2}^J$	n_{H}^{J}
$\frac{1}{2}$	1	0	0
$\frac{3}{2}$	0	0	1
<u>5</u> 2	0	1	1
$\frac{7}{2}$	1	1	1
<u>9</u> 2	1	0	2
$\frac{11}{2}$	1	1	2
$\frac{13}{2}$	1	2	2
$\frac{15}{2}$	1	1	3
$\frac{17}{2}$	2	1	3

total numbers of operators assuming two different displacement lengths

Irrep	Δ, Ω	N	Σ, Ξ	Λ
G_{1g}	221	443	664	656
G_{1u}	221	443	664	656
G_{2g}	188	376	564	556
G_{2u}	188	376	564	556
H_{g}	418	809	1227	1209
H_u	418	809	1227	1209

• total numbers of operators is huge \rightarrow uncharted territory

• ultimately must face two-hadron scattering states

September 10, 2007

Single-site operators

- choose Dirac-Pauli convention for γ-matrices
 - 20 independent single-site Δ^{++} elemental operators:

 $\Delta_{\alpha\beta\gamma} = \epsilon_{abc} \, \tilde{u}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{u}_{c\gamma}, \qquad (\alpha \le \beta \le \gamma)$

• 20 independent single-site N^+ elemental operators:

 $N_{\alpha\beta\gamma} = \varepsilon^{abc} \left(\tilde{u}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{d}_{c\gamma} - \tilde{d}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{u}_{c\gamma} \right), \qquad (\alpha \le \beta, \, \alpha < \gamma)$

• 40 independent single-site Σ^+ elemental operators:

 $\Sigma_{\alpha\beta\gamma} = \epsilon_{abc} \,\, \tilde{u}_{a\alpha} \, \tilde{u}_{b\beta} \,\, \tilde{s}_{c\gamma} \qquad (\alpha \leq \beta)$

• 24 independent single-site Λ⁰ elemental operators:

$$\Lambda_{\alpha\beta\gamma} = \epsilon_{abc} \left(\tilde{u}_{a\alpha} \, \tilde{d}_{b\beta} \, \tilde{s}_{c\gamma} - \tilde{d}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{s}_{c\gamma} \right) \qquad (\alpha < \beta)$$

September 10, 2007

Δ ++ single-site operators

Irrep	Row	DP Operators
G_{1g}	1	$\Delta_{144} - \Delta_{234}$
G_{1g}	2	$-\Delta_{134}+\Delta_{233}$
G_{1u}	1	$\Delta_{124} - \Delta_{223}$
G_{1u}	2	$-\Delta_{114}+\Delta_{123}$
H_{g}	1	Δ_{222}
H_g	2	$-\sqrt{3}\Delta_{122}$
H_g	з	$\sqrt{3}\Delta_{112}$
H_{g}	4	$-\Delta_{111}$
H_g	1	$\sqrt{3}\Delta_{244}$
H_g	2	$-\Delta_{144}-2\Delta_{234}$
H_{g}	з	$2\Delta_{134}+\Delta_{233}$
H_{g}	4	$-\sqrt{3}\Delta_{133}$

Irrep	Row	DP Operators	
H_u	1	$\sqrt{3}\Delta_{224}$	
H_u	2	$-2\Delta_{124}-\Delta_{223}$	
H_u	3	$\Delta_{114}+2\Delta_{123}$	
H_u	4	$-\sqrt{3}\Delta_{113}$	
H_u	1	Δ_{444}	
H_u	2	$-\sqrt{3}\Delta_{344}$	
H_u	з	$\sqrt{3}\Delta_{334}$	
H_u	4	$-\Delta_{333}$	

September 10, 2007

Single-site *N*+ operators

Irrep	Row	DP Operators		
G_{1g}	1	N ₁₂₂		
G_{1g}	2	$-N_{112}$		
G_{1g}	1	$N_{144} - N_{243}$		
G_{1g}	2	$-N_{134} + N_{233}$		
G_{1g}	1	$N_{144} - 2N_{234} + N_{243}$		
G_{1g}	2	$N_{134} - 2N_{143} + N_{233}$		
G_{1u}	1	N142		
G_{1u}	2	$-N_{132}$		
G_{1u}	1	N344		
G_{1u}	2	$-N_{334}$		
G_{1u}	1	$2N_{124} - N_{142} - 2N_{223}$		
G_{1u}	2	$-2N_{114} + 2N_{123} - N_{132}$		

Irrep	Row	DP Operators	
H_g	1	$\sqrt{3}N_{244}$	
H_{g}	2	$-N_{144} - N_{234} - N_{243}$	
H_g	3	$N_{134} + N_{143} + N_{233}$	
H_g	4	$-\sqrt{3} N_{133}$	
H_u	1	$\sqrt{3}N_{224}$	
H_u	2	$-2N_{124} + N_{142} - N_{223}$	
H_u	3	$N_{114} + 2N_{123} - N_{132}$	
H_u	4	$-\sqrt{3} N_{113}$	

September 10, 2007

Testing the three-quark operators

- Next step: smearing optimization and operator pruning
 - optimize link-variable and quark-field smearings
 - □ remove dynamically redundant operators
 - □ remove ineffectual operators
 - □ low statistics runs in quenched approx on small lattices

Quark- and gauge-field smearing

- smeared quark and gluon fields fields \rightarrow dramatically reduced coupling with short wavelength modes
- link-variable smearing (stout links PRD69, 054501 (2004))
 - define $C_{\mu}(x) = \sum_{\pm (\nu \neq \mu)} \rho_{\mu\nu} U_{\nu}(x) U_{\mu}(x + \hat{\nu}) U_{\nu}^{+}(x + \hat{\mu})$ spatially isotropic $\rho_{jk} = \rho$, $\rho_{4k} = \rho_{k4} = 0$

• exponentiate traceless Hermitian matrix

$$\Omega_{\mu} = C_{\mu}U_{\mu}^{+} \qquad Q_{\mu} = \frac{i}{2} \left(\Omega_{\mu}^{+} - \Omega_{\mu}\right) - \frac{i}{2N} \operatorname{Tr}\left(\Omega_{\mu}^{+} - \Omega_{\mu}\right)$$

iterate
$$U_{\mu}^{(n+1)} = \exp\left(iQ_{\mu}^{(n)}\right)U_{\mu}^{(n)}$$
$$U_{\mu} \rightarrow U_{\mu}^{(1)} \rightarrow \cdots \rightarrow U_{\mu}^{(n)} \stackrel{\mu}{\equiv} \widetilde{U}_{\mu}$$

quark-field smearing (covariant Laplacian uses smeared gauge field)

$$\tilde{\psi}(x) = \left(1 + \frac{\sigma_s}{4n_\sigma}\tilde{\Delta}^2\right)^{n_\sigma}\psi(x)$$

September 10, 2007

Importance of smearing

Nucleon G_{1g} channel
 effective masses of 3 selected operators

 noise reduction from link variable smearing, especially for displaced operators

•quark-field smearing reduces couplings to high-lying states

 $\sigma_s = 4.0, \quad n_\sigma = 32$ $n_\rho \rho = 2.5, \quad n_\rho = 16$

•less noise in excited states using $\sigma_s = 3.0$

September 10, 2007

Tuning the smearing

• the effective mass at $t = 4a_t$ for three specific nucleon operators for different quark-field smearings (link smearing same as last slide)

Operator plethora (G_{1g} Nucleon)

September 10, 2007

G_{1g} nucleon operators

September 10, 2007

G_{1g} nucleon operators

September 10, 2007

G_{1g} nucleon operators

September 10, 2007

G_{2g} nucleon operators

September 10, 2007

H_u nucleon operators

September 10, 2007

Operator selection

- Do we need all of these operators?
- If not, how many? How do we choose?
- over six months of experimentation led us to the following rules of thumb:
 - □ noise is the enemy!
 - □ prune first using intrinsic noise (diagonal correlators)
 - □ prune next within operator *types* (single-site, singly-displaced, *etc.*) based on condition number of $\hat{C}_{ij}(t)$
 - prune across all operators based on condition number

 $\hat{C}_{ij}(t) = \frac{C_{ij}(t)}{\sqrt{C_{ii}(t)C_{jj}(t)}}, \quad t = 1$

- best to keep a variety of different types of operators, as long as condition numbers maintained
- low lying spectrum robust if noise minimized, good operator variety
- typically use 16 operators to get 8 lowest lying levels

Nucleon G_{1g} effective masses

- 200 quenched configs, $12^3 \times 48$ anisotropic Wilson lattice, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3$, $m_{\pi} \sim 700$ MeV
- nucleon G_{1g} channel
- green=fixed coefficients, red=principal

Nucleon H_u effective masses

- 200 quenched configs, $12^3 \times 48$ anisotropic Wilson lattice, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3$, $m_{\pi} \sim 700$ MeV
- nucleon H_u channel
- green=fixed coefficients, red=principal

September 10, 2007

Nucleon spectrum

• 200 quenched configs, $12^3 \times 48$ anisotropic Wilson lattice, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3$, $m_{\pi} \sim 700$ MeV

September 10, 2007

Delta spectrum

• 200 quenched configs, $12^3 \times 48$ anisotropic Wilson lattice, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3$, $m_{\pi} \sim 700$ MeV

September 10, 2007

All-to-all stochastic quark propagators

• consider a temporal correlator of a three-quark Σ (*uus*) baryon:

$$C_{lp|\overline{lp}}^{(\Sigma\Lambda\lambda)}(t) = \frac{1}{N_{t}} \sum_{t_{0}} c_{\alpha\beta\gamma;ijk}^{(\Sigma\Lambda\lambda)(l)} c_{\overline{\alpha}\overline{\beta}\overline{\gamma};ij\overline{k}}^{(\Sigma\Lambda\lambda)(\overline{l}\,)*} \sum_{x} \mathcal{E}_{abc} \sum_{\overline{x}} \mathcal{E}_{\overline{a}\overline{b}\overline{c}} \gamma_{\overline{\gamma}\overline{\gamma}}^{4} \gamma_{\overline{\beta}'\overline{\beta}}^{4} \gamma_{\overline{\alpha}'\overline{\alpha}}^{4}$$

$$\times \left\langle Q_{a\alpha ip;\overline{a}\overline{\alpha}'\overline{lp}}^{(u)} \left(\boldsymbol{x}, t+t_{0}; \overline{\boldsymbol{x}}, t_{0} \mid U \right) Q_{b\beta jp;\overline{b}\,\overline{\beta}'\overline{jp}}^{(u)} \left(\boldsymbol{x}, t+t_{0}; \overline{\boldsymbol{x}}, t_{0} \mid U \right) \right.$$

$$Q_{c\gamma kp;\overline{c}\,\overline{\gamma}'\overline{kp}}^{(s)} \left(\boldsymbol{x}, t+t_{0}; \overline{\boldsymbol{x}}, t_{0} \mid U \right) - Q_{a\alpha ip;\overline{b}\,\overline{\beta}'\overline{jp}}^{(u)} \left(\boldsymbol{x}, t+t_{0}; \overline{\boldsymbol{x}}, t_{0} \mid U \right) \right.$$

$$Q_{b\beta jp;\overline{a}\overline{\alpha}'\overline{lp}}^{(u)} \left(\boldsymbol{x}, t+t_{0}; \overline{\boldsymbol{x}}, t_{0} \mid U \right) Q_{c\gamma kp;\overline{c}\,\overline{\gamma}'\overline{kp}}^{(s)} \left(\boldsymbol{x}, t+t_{0}; \overline{\boldsymbol{x}}, t_{0} \mid U \right) \right\rangle_{U}$$

• above expression needs quark propagators from *all* spatial sites \overline{x} on time slice t_0 to all spatial sites x on time slice $t+t_0$

All-to-all stochastic quark propagators (2)

- computing all elements of propagators exactly not feasible
- translational invariance can limit summation over source site to a single site for local operators
- cannot limit source to single site for multi-hadron operators
- disconnected diagrams (scalar mesons) will also need many-to-many quark propagators
- *stochastic estimates* of <u>all</u> quark propagator elements are needed!

Matrix inversion

- quark propagator is just inverse of Dirac matrix M
- noise vectors η satisfying $E(\eta_i)=0$ and $E(\eta_i\eta_j^*)=\delta_{ij}$ are useful for stochastic estimates of inverse of a matrix M
- Z_4 noise is used $\{1, i, -1, -i\}$
- define $X(\eta) = M^{-1}\eta$ then

$$E(X_{i}\eta_{j}^{*}) = E\left(\sum_{k}M_{ik}^{-1}\eta_{k}\eta_{j}^{*}\right) = \sum_{k}M_{ik}^{-1}E\left(\eta_{k}\eta_{j}^{*}\right) = \sum_{k}M_{ik}^{-1}\delta_{kj} = M_{ij}^{-1}$$

• if can solve $M X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$ then we have a Monte Carlo estimate of all elements of M^{-1} :

$$M_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)} \eta_j^{(r)}$$

- variances in above estimates usually unacceptably large
- introduce variance reduction using source *dilution*

Source dilution for single matrix inverse

• dilution introduces a complete set of projections:

$$P^{(a)}P^{(b)} = \delta^{ab}P^{(a)}, \qquad \sum_{a} P^{(a)} = 1, \qquad P^{(a)\dagger} = P^{(a)}$$
observe that

$$M_{ij}^{-1} = M_{ik}^{-1} \delta_{kj} = \sum_{a} M_{ik}^{-1} P_{kj}^{(a)} = \sum_{a} M_{ik}^{-1} P_{kk'}^{(a)} \delta_{k'j'} P_{j'j}^{(a)}$$
$$= \sum_{a} M_{ik}^{-1} P_{kk'}^{(a)} E\left(\eta_{k'} \eta_{j'}^{*}\right) P_{j'j}^{(a)} = \sum_{a} M_{ik}^{-1} E\left(P_{kk'}^{(a)} \eta_{k'} \eta_{j'}^{*} P_{j'j}^{(a)}\right)$$
$$\text{define} \quad \eta_{k}^{[a]} = P_{kk'}^{(a)} \eta_{k'}, \qquad \eta_{j}^{[a]*} = \eta_{j'}^{*} P_{jj}^{(a)}, \qquad X_{k}^{[a]} = M_{kj}^{-1} \eta_{j}^{[a]}$$

so that

$$M_{ij}^{-1} = \sum_{a} E(X_i^{[a]} \eta_j^{[a]*})$$

• Monte Carlo estimate is now

$$M_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_a X_i^{(r)[a]} \eta_j^{(r)[a]*}$$

• $\sum_{a} \eta_{i}^{[a]} \eta_{j}^{[a]*}$ has same expected value as $\eta_{i} \eta_{j}^{*}$, but reduced variance (statistical zeros \rightarrow exact)

September 10, 2007

Dilution for products of matrix inverses

- in baryon correlators, need estimates of $M_{ij}^{-1}M_{kl}^{-1}M_{mn}^{-1}$
- introduce independent noise vectors for each quark line for unbiased estimate

$$M_{ij}^{-1}M_{kl}^{-1}M_{mn}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_{abc} X_i^{(1,r)[a]} \eta_j^{(1,r)[a]*} X_k^{(2,r)[b]} \eta_l^{(2,r)[b]*} X_m^{(3,r)[c]} \eta_n^{(3,r)[c]*}$$

• take average of permutations of quark line indices 123 for increased statistics

Source-sink factorization

baryon correlator has form

 $C_{l\bar{l}} = c_{ijk}^{(l)} c_{\bar{i}\bar{j}\bar{k}}^{(\bar{l}\,)*} Q_{i\bar{i}}^A Q_{j\bar{j}}^B Q_{k\bar{k}}^C$ stochastic estimates with dilution

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} c_{ijk}^{(l)} c_{\bar{i}\bar{j}\bar{k}}^{(\bar{l})*} \left(\varphi_i^{(Ar)[d_A]} \eta_{\bar{i}}^{(Ar)[d_A]*} \right) \\ \times \left(\varphi_j^{(Br)[d_B]} \eta_{\bar{j}}^{(Br)[d_B]*} \right) \left(\varphi_k^{(Cr)[d_C]} \eta_{\bar{k}}^{(Cr)[d_C]*} \right)$$

define

$$\Gamma_{l}^{(r)[d_{A}d_{B}d_{C}]} = c_{ijk}^{(l)} \varphi_{i}^{(Ar)[d_{A}]} \varphi_{j}^{(Br)[d_{B}]} \varphi_{k}^{(Cr)[d_{C}]}$$
$$\Omega_{l}^{(r)[d_{A}d_{B}d_{C}]} = c_{ijk}^{(l)} \eta_{i}^{(Ar)[d_{A}]} \eta_{j}^{(Br)[d_{B}]} \eta_{k}^{(Cr)[d_{C}]}$$

correlator becomes dot product of source vector with sink vector

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} \Gamma_l^{(r)[d_A d_B d_C]} \Omega_{\bar{l}}^{(r)[d_A d_B d_C]*}$$

store *ABC* permutations to handle Wick orderings

September 10, 2007

Dilution schemes for spectroscopy

- Time dilution (particularly effective) $P_{a\alpha;b\beta}^{(B)}\left(\vec{x},t;\vec{y},t'\right) = \delta_{ab}\delta_{\alpha\beta}\delta\left(\vec{x},\vec{y}\right)\delta_{Bt}\delta_{Bt'}, \qquad B = 0,1,\dots,N_t - 1$
- Spin dilution

$$P_{a\alpha;b\beta}^{(B)}\left(\vec{x},t;\vec{y},t'\right) = \delta_{ab}\delta_{B\alpha}\delta_{B\beta}\delta\left(\vec{x},\vec{y}\right)\delta_{tt'}, \qquad B = 0,1,2,3$$

• Color dilution

$$P_{a\alpha;b\beta}^{(B)}\left(\vec{x},t;\vec{y},t'\right) = \delta_{Ba}\delta_{Bb}\delta_{\alpha\beta}\delta\left(\vec{x},\vec{y}\right)\delta_{tt'}, \qquad B = 0,1,2$$

• Spatial dilutions?

Dilution tests

- 20 quenched configs, $12^3 \times 48$ anisotropic Wilson lattice, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3$, $m_{\pi} \sim 700$ MeV (PRELIMINARY)
- nucleon G_{1g} channel

Time dilution

Time + spin dilution

September 10, 2007

Dilution tests (2)

- 20 quenched configs, $12^3 \times 48$ anisotropic Wilson lattice, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3$, $m_{\pi} \sim 700$ MeV (PRELIMINARY)
- nucleon G_{1g} channel (lowest three principal effective masses)

Time + spin dilution

Point-to-all

September 10, 2007

Future work on dilutions

- Much work to do exploring stochastic quark propagators with dilutions
 - □ different dilution schemes
 - number of noise vectors
 - low-lying eigenmodes
 - □ dependence on lattice spacing, quark masses
- Software effort must be completed first! (soon!!)
- Study three-quark baryon and quark-antiquark meson operators first
- Multi-hadron operators important milestone
- Disconnected diagrams

Configuration generation

- Significant time on USQCD (DOE) and NSF computing resources
- Anisotropic clover fermion action (with stout links) and anisotropic improved gauge action
 - □ Tunings of couplings, aspect ratio, lattice spacing in progress
- Anisotropic Wilson action configurations generated during clover tuning
- Three lattice spacings: a = 0.125 fm, 0.10 fm, 0.08 fm
- Three volumes: $V = (3.2 \text{ fm})^4$, $(4.0 \text{ fm})^4$, $(5.0 \text{ fm})^4$
- 2+1 flavors, $m_{\pi} \sim 350 \text{ MeV}, 220 \text{ MeV}, 180 \text{ MeV}$
- USQCD Chroma software suite

Summary

- outlined ongoing efforts of LHPC to extract baryon spectrum using Monte Carlo methods on a space-time lattice
 - □ mesons (and hybrids), tetraquarks, ...to be studied as well
- emphasized need for correlation matrices to extract spectrum
- spin identification must be addressed
- as light-quark mass decreases, inclusion of multi-hadron operators will become important
- very challenging calculations
- ...to be continued

Review of exotics (briefly)

- Gluonic excitations
- Exotic quantum numbers
- Results from 2003 and earlier
- Focus on three new studies
 - Dudek, Edwards, Mathur, Richards hep-lat/0611006
 - □ Hedditch et al., Phys.Rev.D72, 114507 (2005)
 - □ McNeile et al., Phys.Rev.D73, 074506 (2006)

Gluonic excitations (new form of matter)

- QCD suggests existence of states in which *gluon* field is excited
 - □ glueballs (*excited glue*)
 - □ hybrid mesons $(q\overline{q} + excited glue)$
 - □ hybrid baryons (*qqq* + *excited glue*)
- such states not well understood
 - □ quark model fails
 - perturbative methods fail
- lack of understanding makes identification difficult!
- confront gluon field behavior
 bags, strings, ...
- clues to confinement

Constituent quark model

- much of our understanding of hadron formation comes from the constituent quark model
 - motivated by QCD
 - □ valence quarks interacting via Coulomb + linear potential
 - □ gluons: source of the potential, *dynamics ignored*

Quark model (continued)

- *most* of observed low-lying hadron spectrum described reasonably well by quark model
 - □ agreement is amazing given the crudeness of the model
- mesons: only certain J^{PC} allowed:

•
$$0^{+-}, 0^{--}, 1^{-+}, 2^{+-}, 3^{-+}, 4^{+-}, \dots$$
 forbidden
 $P = (-1)^{L+1}$ $L = 0, 1, 2, \dots$
 $C = (-1)^{L+S}$ $S = 0, 1$

- experimental results now need input beyond the quark model
 - over-abundance of states
 - □ forbidden 1⁻⁺ states

Heavy-quark hybrid mesons

- more amenable to theoretical treatment than light-quark hybrids
- early work: Hasenfratz, Horgan, Kuti, Richard (1980), Michael, Griffiths, Rakow (1983)
- possible treatment like diatomic molecule (Born-Oppenheimer)
 - \Box slow heavy quarks $\leftarrow \rightarrow$ nuclei
 - □ fast gluon field $\leftarrow \rightarrow$ electrons (and light quarks)
- gluons provide adiabatic potentials $V_{Q\overline{Q}}(r)$
 - gluons fully relativistic, interacting
 - potentials computed in lattice simulations
- nonrelativistic quark motion described in *leading* order by solving Schrodinger equation for each $V_{o\overline{o}}(r)$

 $\left\{\frac{p^2}{2\mu} + V_{Q\overline{Q}}(r)\right\} \psi_{Q\overline{Q}}(r) = E \psi_{Q\overline{Q}}(r)$

• conventional mesons from Σ_g^+ ; hybrids from Π_u, Σ_u^-, \dots

Excitations of static quark potential

- gluon field in presence of static quark-antiquark pair can be *excited*
- classification of states: (notation from molecular physics)
 - □ magnitude of glue spin

projected onto molecular axis $\Lambda = 0, 1, 2, ...$

 $=\Sigma,\Pi,\Delta,\dots$

 charge conjugation + parity about midpoint
 η = g (even)
 = u (odd)
 chirality (reflections in plane containing axis) Σ⁺, Σ⁻
 Π,Δ,...doubly degenerate
 (Λ doubling)

Juge, Kuti, Morningstar, PRL 90, 161601 (2003)

September 10, 2007

Leading Born-Oppenheimer

- replace covariant derivative \vec{D}^2 by $\vec{\nabla}^2 \rightarrow$ neglects retardation
- neglect quark spin effects
- solve radial Schrodinger equation

$$\frac{-1}{2\mu}\frac{d^2u(r)}{dr^2} + \left\{\frac{\left\langle L_{q\bar{q}}^2\right\rangle}{2\mu r^2} + V_{q\bar{q}}(r)\right\}u(r) = Eu(r)$$

• angular momentum

$$\vec{J} = \vec{L} + \vec{S}$$
 $\vec{S} = \vec{s}_q + \vec{s}_{\overline{q}}$ $\vec{L} = \vec{L}_{q\overline{q}} + \vec{J}_g$

- in LBO, *L* and *S* are good quantum numbers
- centrifugal term $\langle \vec{L}_{q\bar{q}}^2 \rangle = L(L+1) - 2\Lambda^2 + \langle \vec{J}_g^2 \rangle$ • J^{PC} eigenstates \rightarrow Wigner rotations $|LSJM; \Lambda \eta \rangle + \varepsilon |LSJM; -\Lambda \eta \rangle$ $\langle \vec{J}_g^2 \rangle = 0 \quad (\Sigma_g^+)$ $= 2 \quad (\Pi_u, \Sigma_u^-)$

 $\Box \eta$ is CP, $\varepsilon = \pm 1$ for $\Lambda \ge 1$, $\varepsilon = \pm 1$ for Σ^{\pm}

• LBO allowed $J^{PC} \rightarrow P = \varepsilon (-1)^{L+\Lambda+1}, \quad C = \eta \varepsilon (-1)^{L+S+\Lambda}$

Leading Born-Oppenheimer spectrum

- results obtained (in absence of light quark loops)
- good agreement with experiment below BB threshold
- plethora of hybrid states predicted (caution! quark loops)
- but is a Born-Oppenheimer treatment valid?

LBO degeneracies: $\Sigma_{g}^{+}(S): 0^{-+}, 1^{--}$ $\Sigma_{g}^{+}(P): 0^{++}, 1^{++}, 2^{++}, 1^{+-}$ $\Pi_{u}(P): 0^{-+}, 0^{+-}, 1^{++}, 1^{--},$

 $1^{+-}, 1^{-+}, 2^{+-}, 2^{-+}$

Juge, Kuti, Morningstar, Phys Rev Lett 82, 4400 (1999)

September 10, 2007

Charmonium LBO

• same calculation, but for charmonium

September 10, 2007

Testing LBO

- test LBO by comparison of spectrum with NRQCD simulations
 - □ include retardation effects, but no quark spin, no \vec{p} , no light quarks
 - □ allow possible mixings between adiabatic potentials
- dramatic evidence of validity of LBO
 - □ level splittings agree to 10% for 2 conventional mesons, 4 hybrids

$$H_{1,}H_{1}^{'} = 1^{--}, 0^{-+}, 1^{-+}, 2^{-+}$$

 $H_{2} = 1^{++}, 0^{+-}, 1^{+-}, 2^{+-}$
 $H_{3} = 0^{++}, 1^{+-}$

J^{PC}		Degeneracies	Operator
0-+	S wave	1	$\hat{\chi}^{\dagger} \left[\hat{\Delta}^{(2)} ight]^{p} ilde{\psi}$
1+-	P wave	0^++, 1^++, 2^++	$\hat{oldsymbol{\chi}}^\dagger ilde{oldsymbol{\Delta}} ilde{\psi}$
1	H ₁ hybrid	0^+,1^+,2^+	$\hat{\chi}^{\dagger} \; \hat{\mathbf{B}} \left[\hat{\Delta}^{(2)} ight]^{p}$ (
1++	H ₂ hybrid	0^+-,1^+-,2^+-	$\hat{\chi}^{\dagger} \hat{\mathbf{B}} \times \hat{\Delta} \hat{\psi}$
0++	Ha hybrid	1+-	$\hat{\chi}^{\dagger} \; \hat{\mathbf{B}} \cdot \hat{\boldsymbol{\Delta}} \; \hat{\psi}$

lowest hybrid 1.49(2)(5) GeV above 1S

September 10, 2007

Bottomonium hybrids

• calculation of bottomonium hybrids in 2002 confirmed earlier results

- \Box quenched, several lattice spacings so $a \rightarrow 0$ limit taken
- □ improved anisotropic gluon and fermion (clover) actions
- □ good agreement with Born-Oppenheimer (but errors large)

September 10, 2007

Charmonium hybrids

- determination of some charmonium hybrids in 2002
 - quenched, several lattice spacings for continuum limit
 - □ improved, anisotropic gluon and fermion (clover) actions
 - □ results suggest significant (but not large) corrections from LBO

Liao, Manke, hep-lat/0210030

September 10, 2007

Light-quark hybrids

- determinations of exotic 1^{-+} hybrid meson from 2003 and earlier
 - □ improved staggered fermions (lighter quark masses)
 - □ quenched and unquenched, Wilson gluon action
 - \Box $a \approx 0.09 \text{ fm}$
 - lightest mass still

MILC, hep-lat/0301024

September 10, 2007

Recent light hybrid 1⁻⁺meson study

- Hedditch et al., Phys.Rev.D72, 114507 (2005)
- quenched isotropic $20^3 \times 40$ lattice, FLIC fermions, improved gauge
- large errors, still not definitive

September 10, 2007

Light hybrid meson decay widths

- McNeile et al. (UKQCD) Phys.Rev. D73, 074506 (2006)
- $N_f=2$ dynamical clover fermions
- $m_{\pi} r_0 = 1.47$ and 1.29 (rather heavy)
- found hybrid 1⁻⁺ mass 2.2(2) GeV
- partial width to π b₁ of 400(120) MeV and to π f₁ of 90(6) MeV
- some evidence of coupling strength decrease as quark mass decreases

Charmonium exotics

- Dudek, Edwards, Mathur, Richards hep-lat/0611006
- quenched $12^3 \times 48$ anisotropic lattice a = 0.1 fm, $a_s/a_t = 3$
- 1⁻⁺ mass around 4.2 GeV
 - □ lower than prior Manke study... but better effective mass
- signal for 0^{+-} and 2^{+-} exotics obtained (χ^{++} , h^{+-} , ψ^{--} , η^{-+})

