Nuclear astrophysics with real photons

Jens Hasper

Institut für Kernphysik, TU Darmstadt

EINN 2007 Milos Island, 11.09.2007

CASSIOPEIA A, CHANDRA 01/2000

J. Hasper, IKP, TU Darmstadt, AG Zilges Nuclear Astrophysics with real photons

- Real photons and the nucleosynthesis of heavy elements
- Real photon experiments and astrophysical implications
 - Branching points in the s process
 - Photodissociation rates for the *p* process
- Experiments with tagged photons

Nucleosynthesis and solar abundance

Moreover: *p* process, *vp* process, *rp* process, ...

Nucleosynthesis of heavy elements

r proces $(\mathbf{n}, \gamma) \leftrightarrow (\gamma, \mathbf{n})$

J. Hasper, IKP, TU Darmstadt, AG Zilges

Nuclear Astrophysics with real photons

Reaction rates for nucleosynthesis networks

J. Hasper, IKP, TU Darmstadt, AG Zilges **Nuclear Astrophysics with real photons**

Experiments at the S-DALINAC

The experimental setup at the S-DALINAC

Determination of reaction yield

The s process:

Investigations of branching points

J. Hasper, IKP, TU Darmstadt, AG Zilges Nuclear Astrophysics with real photons

Measurements of neutron-capture cross section

F. Käppeler et al., NPA 777 (2006) 291

- Data from high-precision neutron-capture experiments available for a wide range of isotopes
- Neutron-capture experiments hardly possible for unstable isotopes (⇒ branching points)

Branching points: a probe for stellar conditions

 $\frac{N(^{148}Sm)}{N(^{150}Sm)} \sim \frac{\lambda_{\beta}}{\lambda_{\beta} + \lambda_{n}} \quad \text{(branching ratio)}$

 λ_n depends on: - *neutron capture cross section*

- neutron density and temperature in stellar environment

Test of theoretical predictions for (γ, n) cross section

J. Hasper, submitted to PRC

Principle of Detailed Balance:

$$\underbrace{\lambda_{(\gamma,n)}^{*}}_{(2J_{f}+1)} = \underbrace{\frac{(2J_{n}+1)(2J_{i}+1)}{(2J_{f}+1)}}_{(2J_{f}+1)} \underbrace{1}_{1+\delta_{12}} \underbrace{\left(\frac{G_{n}G_{i}}{G_{f}}\right)}_{(1-\delta_{f}-1)} \underbrace{\left(\frac{A_{n}A_{i}}{A_{f}}\right)^{3/2}}_{(2\pi N_{A}\hbar^{2})} \underbrace{\left(\frac{KT}{2\pi N_{A}\hbar^{2}}\right)^{3/2}}_{(2\pi N_{A}\hbar^{2})} \underbrace{\left(\frac{Q_{n}}{KT}\right)}_{(n,\gamma)} \exp\left(-\frac{Q_{n}}{KT}\right)}_{(n,\gamma)}$$
Only applicable under stellar conditions !!!

T. Rauscher et al., ADNDT 75 (2000) 1

Principle of "Detailed Balance"

Stellar conditions (T $\approx 10^8$ K) \leq)

J. Hasper, IKP, TU Darmstadt, AG Zilges Nuclear Astrophysics with real photons

The Branching Point ¹⁵¹Sm

 \Rightarrow High sensitivity of (γ ,n) reaction to the transition into 1st excited state

The p process:

Photodissociation reactions in explosive scenarios

The astrophysical region of interest: The Gamow-like window

PDR below the neutron threshold ((γ, γ') @ S-DALINAC)

Is there also a resonant structure above the threshold?

PDR above the neutron threshold (Coulex @ GSI)

J. Hasper, IKP, TU Darmstadt, AG Zilges Nuclear Astrophysics with real photons

Impact of PDR on nuclear astrophysics

- PDR *above* threshold has a direct impact on reaction rates for nuclear astrophysics
- PDR below neutron threshold shifted to above the threshold at high temperatures (Brink's hypothesis)
- PDR has significant impact on explosive nucleosynthesis (T ~ 10⁹ K)

Approximation of Planck Spectrum

Results for ground-state reaction rates (T = $2.5 \times 10^9 \text{ K}$)

75 (2000) 1 384 (2003) TUNC Rep. eman (2004)Goriely, Phys. hie/ 769 Arnould and S. and a et Koning Rauscher 5 Σ Γ Γ

Direct measurements with tagged photons

energy of each photon known

 Direct measurement of photodissociation cross sections (γ,n), (γ,p), (γ,α) with high energy resolution (ΔE~25 keV)

(> 100 keV above threshold for (γ, n))

First production run in 2008

Summary

- Photo-induced reactions have significant implications for the nucleosynthesis of heavy elements (s, r and p process)
- Input from nuclear physics mandatory to improve astrophysical models
 - Measurements of reaction rates
 - Study of nuclear physics parameters
- New experimental techniques will open new fields of research
 - Photon tagging \rightarrow photo-induced reactions with high resolution
 - Extension of investigation to (γ ,p) and (γ , α) reactions
 - Radioactive beam facilities \rightarrow investigation of unstable isotopes

Many thanks to...

AG Zilges, TU Darmstadt:

Marc Büssing, Anna Constantinescu, Michael Elvers, Janis Endres, Matthias Fritzsche, Eva Gehrmann, Jan Glorius, Linda Kern, Kai Lindenberg, Sebastian Müller, Anne Sauerwein, Deniz Savran, Vanessa Simon, Kerstin Sonnabend, Andreas Zilges

> Roberto Gallino, Turin, Italy Franz Käppeler, Karlsruhe, Germany Alberto Mengoni, Wien, Austria Thomas Rauscher, Basel, Switzerland

> > Tury Remain Show Show

This project is supported by DFG SFB 634

J. Hasper, IKP, TU Darmstadt, AG Zilges Nuclear Astrophysics with real photons

Cross-section predictions from Hauser-Feshbach calculations

T. Rauscher

Nucleosynthesis in TP AGB-Stars

A. I. Boothroyd, SCIENCE 314 (2006) 1690

The challenge to measure (γ, α) -reactions

- Very low reaction yield \rightarrow low activity measurements
- Decay spectra dominated by competing reactions

Experiments in inverse kinematics: FRS/LAND setup @ GSI

Calibration of the Photon Flux

Nukleosynthese und Solare Häufigkeitsverteilung

Big Bang Nukleosynthese – BB

- Produktion von H: $T \approx 7.5 \cdot 10^9$ K, p:n ≈ 7:1
- Produktion von D: $T \approx 10^9$ K, p + n \rightarrow d + γ
- Produktion von ³He: $T \approx 10^9$ K, z.B. d + p \rightarrow ³He + γ
- Produktion von ⁴He: $T \approx 10^9$ K, z.B. ³He + n \rightarrow ⁴He + γ
- Produktion von ⁷Li: $T \approx 10^9$ K, z.B. ³He + $\alpha \rightarrow$ ⁷Be + γ und Elektroneneinfang zu ⁷Li

	Elementhäufigkeit	
D/H	0.238 ± 0.005	
³ He/H	(2.78 ± 0.29) · 10 ⁻⁵	
⁴ He/H	(1.2 – 1.5) · 10 ⁻⁵	
⁷ Li/H	(0.59 – 4.1) · 10 ⁻¹⁰	

Nukleosynthese und Solare Häufigkeitsverteilung

Stellare Nukleosynthese – CP

- CP: charged particle reactions
- Wasserstoffbrennen: $4p \rightarrow {}^{4}He + 2e^{+} + 2v$ realisiert im p-p-Zyklus, CNO-Zyklus, NeNa-, MgAl-Zyklus
- Heliumbrennen: $3\alpha \rightarrow {}^{12}C$ außerdem: ${}^{12}C(\alpha,\gamma)$, ${}^{16}O(\alpha,\gamma)$
- Kohlenstoffbrennen: ^{12}C + ^{12}C \rightarrow ^{20}Ne + α
- Neonbrennen: ²⁰Ne(α , γ)²⁴Mg
- Sauerstoffbrennen: ¹⁶O + ¹⁶O \rightarrow ²⁸Si + α
- Siliziumbrennen: ²⁸Si + 7 α \rightarrow ⁵⁶Ni

Nukleosynthese und Solare Häufigkeitsverteilung

Nukleosynthese im thermischen Gleichgewicht – NSE

- NSE: nuclear statistical equilibrium
- Photodesintegration und Einfangreaktion im Gleichgewicht

- Reaktionsmechanismus:

$${}^{28}Si + \alpha \leftrightarrow {}^{32}S + \gamma$$

 ${}^{32}S + \alpha \leftrightarrow {}^{36}Ar + \gamma$
 ${}^{36}Ar + \alpha \leftrightarrow {}^{40}Ca + \gamma$
...
 ${}^{52}Fe + \alpha \leftrightarrow {}^{56}Ni + \gamma$

→ nur die stabilsten Kerne "überleben"

Results for ground state reaction rates ($T_9 = 2.5$)

Isotope	λ _{exp,gs}	Reference	
¹⁸⁶ W	310(40)	K. Sonnabend et al., ApJ 583 (2003) 506	
¹⁸⁵ Re	19(7)	S. Müller et al.,	
¹⁸⁷ Re	76(7)	Phys. Rev. C 73 (2006) 025804	
¹⁹⁰ Pt	0.4(2)	K. Vogt et al	
¹⁹² Pt	0.5(2)	Phys. Rev. C 63 (2001) 055802	
¹⁹⁸ Pt	87(21)		
¹⁹⁷ Au	6.2(8)	K. Vogt et al., Nucl. Phys. A 707 (2002) 241	
¹⁹⁶ Hg	0.42(7)		
¹⁹⁸ Hg	2.0(3)	K. Sonnabend et al., Phys. Rev. C 70 (2004) 035802	
²⁰⁴ Hg	57(21)		
²⁰⁴ Pb	1.9(3)		
¹⁹¹ lr	4.3(5)	J. Hasper, to be published	
¹⁹³ lr	13.5(16)		

Possible (γ ,n) reactions in photoactivation experiments

Use Accelerator Mass Spectrometry where detection rate is too low

J. Hasper, IKP, TU Darmstadt, AG Zilges Nuclear Astrophysics with real photons

p process contributions to s-isotope abundance

s-only isotope	<i>p</i> process contribution [%]
⁷⁰ Ge	9.7
⁷⁶ Se	9.7
⁸⁰ Kr	15.0
⁸² Kr	3.0
⁸⁶ Sr	5.6
¹⁰⁴ Pd	9.0
¹¹⁰ Cd	7.0
¹¹⁶ Sn	2.6
¹²² Te	3.6
¹²⁴ Te	2.0
¹³⁴ Ba	4.2

s-only isotope	<i>p</i> process contribution [%]
¹³⁶ Ba	1.3
¹⁴² Nd	9.3
¹⁴⁸ Sm	1.1
¹⁵⁰ Sm	1.7
¹⁵² Gd	33.0
¹⁵⁴ Gd	5.0
¹⁶⁰ Dy	2.4
¹⁶⁴ Er	9.0
¹⁷⁰ Yb	4.3
¹⁸⁶ Os	1.1
¹⁹² Pt	1.8

F. Käppeler et al., APJ 354 (1990) 630

Uncertainties of Elemental Abundances

E. Anders and N. Grevesse, Geochim. Cosmochim. Acta 53 (1989) 197

The s-process path in the rare earth region

Measured in neutron capture experiments (Karlsruhe, n_TOF,...)

short-lived isotopes

 $(\gamma,n) \leftrightarrow (n,\gamma)$

Modelling the stellar nucleosynthesis **Galactic Evolution Stellar Evolution** • Averaging over stars with various metallicity Evolutionary models and mass Spectral observations \Rightarrow Physical conditions **Nuclear Physics** stellar Input nucleosynthesis Cross sections and reaction rates **Elemental Decay rates of unstable Abundances** isotopes High-resolution spec-Influence of thermal troscopy and excitations investigation of meteorides \Rightarrow Reaction flow

Astrophysical site of the s process

Weak component

– A ≈ 56 – 90

- massive stars (> 10 M_{solar})
- neutron source: ²²Ne(α,n)
- He burning: n_n ≈ 10⁶ cm⁻³, T ≈ 2 – 3·10⁸ K

– C-shell burning: n_n ≈ 10¹¹ cm⁻³, T ≈ 10⁹ K

Main component

– 85 < A < 209

- He-shell burning in TP AGB-Stars (1–3 M_{solar})
- two neutron sources:
 - ¹³C(α,n): *n*_n ≈ 10⁷ cm⁻³, *T* ≈ 10⁸ K, ≈ 10.000 yr

```
<sup>22</sup>Ne(α,n): n<sub>n</sub> ≈ 10<sup>11</sup> cm<sup>-3</sup>,
T ≈ 3·10<sup>8</sup> K, ≈ 10 yr
```

Time scale for neutron capture: 0.1 yr – 100 yr

Branching points and stellar neutron density

Branching	n _n (10 ⁸ cm ⁻³)	Reference
points		
⁹⁵ Zr	4 ⁺³ ₋₂	Käppeler et al., ApJ 354 (1990)
¹⁴⁷ Nd / ¹⁴⁷ Pm / ¹⁴⁸ Pm	$3.0^{+1.1}_{-1.1}$	Käppeler et al., ApJ 354 (1990)
	$4.9^{+0.6}_{-0.5}$	Reifarth et al., ApJ 582 (2003)
¹⁶⁹ Er / ¹⁷⁰ Tm	$1.8^{+4.5}_{-0.8}$	Käppeler et al., ApJ 354 (1990)
¹⁸⁵ W / ¹⁸⁶ Re	4.1 ^{+1.2} _{-1.1}	Käppeler et al., ApJ 366 (1991)
	$3.8^{+0.9}_{-0.8}$	Sonnabend et al., ApJ 583 (2002)
¹⁹¹ Os / ¹⁹² Ir	0.7 ^{+0.05} _{-0.02}	Koehler et al., ApJ

The s process: Overview

- Astrophysical sites:
- Neutron sources:
- Moderate physical conditions:
- Time scale for neutron capture:

massive stars (> 10 M_{solar}) TP AGB-Stars (1–3 M_{solar})

²²Ne(α,n), ¹³C(α,n)

T ~ 10⁸ K n_n ~ 10⁶-10¹¹ cm⁻³

0.1 yr – 100 yr

S-process path follows the valley of stability

The *p* process: Overview

- 35 stable proton-rich isotopes can not be produced in neutron capture processes
- Photodisintegration process
 - (γ ,n), (γ ,p), (γ , α) reactions
 - about 10000 reaction rates involved
 - starts from seed nuclei produced in s,r
 process
- Astrophysical site: Typ II supernovae

– T~ 2-3 GK