GiBUU π benchmarks $\pi\pi$ photoproduction ω photoproduction00000000000000

e⁻ induced processes

Summary and Outlook

Deducing in-medium properties of hadrons The GiBUU transport model

O. Buss, L. Alvarez-Ruso, A. Larionov, T. Leitner, P. Mühlich and U. Mosel

EINN 2007

Workshop on "Electromagnetic studies of nuclear systems" Milos, September 2007

GiBUU 000	π benchmarks	$\pi\pi$ photoproduction	ω photoproduction	e [—] induced processes	Summary and Outlook

- Aim to observe hadrons within a nuclear medium
- **Problem:** Link between experiments and underlying physics often unclear
 - Distinguish profane and extraordinary effects
- Simulation of the whole reaction process
 - Full coupled channel approach
 - Include detector acceptances

Motivation

- Transport hadronic matter through space-time, from reaction zone to detector
- R&D phase before experiments
 - Need for event generators

<ロ> <同> <同> <日> <同> <日> <日> <同> <日</p>

GiBUU 000	π benchmarks	$\pi\pi$ photoproduction	ω photoproduction 00	e [—] induced processes	Summary and Outlook
Moti	vation				

- Aim to observe hadrons within a nuclear medium
- **Problem:** Link between experiments and underlying physics often unclear
 - Distinguish profane and extraordinary effects
- Simulation of the whole reaction process
 - Full coupled channel approach
 - Include detector acceptances
 - Transport hadronic matter through space-time, from reaction zone to detector
- R&D phase before experiments
 - Need for event generators

GiBUU 000	π benchmarks	$\pi\pi$ photoproduction	ω photoproduction	e [—] induced processes	Summary and Outlook
Moti	vation				

- Aim to observe hadrons within a nuclear medium
- **Problem:** Link between experiments and underlying physics often unclear
 - Distinguish profane and extraordinary effects
- Simulation of the whole reaction process
 - Full coupled channel approach
 - Include detector acceptances
 - Transport hadronic matter through space-time, from reaction zone to detector
- R&D phase before experiments
 - Need for event generators

<ロ> <同> <同> <日> <同> <日> <日> <同> <日</p>

GiBUU 000	π benchmarks	$\pi\pi$ photoproduction	ω photoproduction	e [—] induced processes	Summary and Outlook
Motivation					

- Aim to observe hadrons within a nuclear medium
- **Problem:** Link between experiments and underlying physics often unclear
 - Distinguish profane and extraordinary effects
- Simulation of the whole reaction process
 - Full coupled channel approach
 - Include detector acceptances
 - Transport hadronic matter through space-time, from reaction zone to detector
- R&D phase before experiments
 - Need for event generators

<ロ> <同> <同> <日> <同> <日> <日> <同> <日</p>

 π benchmarks

 $\pi\pi$ photoproduction

ω photoproduction
 οο

e⁻ induced processes

Summary and Outlook

Example: The σ -meson

Shift of spectral strength to lower masses and a more narrow width in the Medium

e.g. Bernard et al. [Phys Rev Lett 59 (1989)],

Hatsuda et al [Phys Rev Lett B367 (1999)]

Experiment

• $\pi\pi$ photoproduction In-medium shift of the σ meson or just pion FSI?

 $\pi\pi$ photoproduction

ω photoproduction
 οο

e⁻ induced processes

Summary and Outlook

Outline

- The GiBUU transport model
- Applications
 - **1** π -benchmarks: DCX, ...
 - (2) $\pi\pi$ photo-production
 - \bigcirc ω photo-production
 - e⁻ induced processes
- Summary & Outlook

ω photoproduction
 00

e⁻ induced processes

Summary and Outlook

The GiBUU transport model: Introduction

- Universal framework for various observables
 - Heavy-ion-collisions
 - Photon-, electron-, pion- and neutrino-induced processes
 - Gives hadronic multiplicities and also dilepton yields (e.g. for g7 at JLab)

GiBUU	π benchmarks	$\pi\pi$ photoproduction	ω photoproduction	e ⁻ induced processes	Summary and Outlook
000					

The BUU equation

$$\frac{df_1^X(\vec{r}, \boldsymbol{p}, t)}{dt} = I_{coll}\left(f_1^X, f_1^a, f_1^b, \ldots\right)$$

Offshell-transport

The collision term

- Full coupled channel problem
- Resonance model (Manley [Phys Rev C29 (1984)], PDG)
 - 61 baryons and 21 mesons in the code
- Background terms $\sigma_{bg} = \sigma_{exp} \sigma_{Res}$
- Total cross sections as incoherent sums

Summary and Outlook

Medium modifications

Fermi motion

- Pauli Blocking
- Width modification
 - Collisional broadening

Δ: Oset et al., NPA 468 (1987) 631; baryons: OB et al., nucl-th0707-0232

Potentials

- Coulomb potential
- Baryons
 - Momentum dependend mean-field (Welke et al, Phys Rev C38 (1988) 2101)

•
$$V_{\Delta} = \frac{2}{3} V_{\text{nucleon}}$$

 π benchmarks ∞ 000

 e^- induced processes

Summary and Outlook

π benchmarks

Summary and Outlook

Testing the model for pion FSI

Pion absorption data

- Full width in comparison to optical model results

Pion DCX

 π benchmarks

Summary and Outlook

Testing the model for pion FSI

- Pion absorption data
- Pion reaction cross sections
- Full width in comparison to optical model results ⇒ EPJ A29(2) (2006)

• Pion DCX

 π benchmarks

000000

Data: Friedman et al., PLB257 (1991); Ashery et al. PRC 23,5(1981)

Summary and Outlook

Testing the model for pion FSI

- Pion absorption data
- Pion reaction cross sections
- Full width in comparison to optical model results
 ⇒ EPJ A29(2) (2006)
- Pion DCX

 π benchmarks

Summary and Outlook

Testing the model for pion FSI

- Pion absorption data
- Pion reaction cross sections
- Full width in comparison to optical model results
 ⇒ EPJ A29(2) (2006)
- Pion DCX

 π benchmarks

Sensitive test for multiple scattering theory

- Extensive data sets for $E_{kin} = 120 270$ MeV, i.e. LAMPF
- Hüfner and Thies (1979): Qualitative agreement
- Vicente, Oset and Salcedo (1989): Focus on $\pi\pi$ production

▲□▶▲□▶▲□▶▲□▶ 三回 のQの

iBUU π benchmarks000000000

 $\pi\pi$ photoproduction

ω photoproduction
 οο

e induced processes

Summary and Outlook

Sensitivity to model details

Process highly sensitive to surface effects \rightarrow Access to surface properties ?!

$NN\pi \rightarrow NN$ is important

Total Xsections

・ロット (雪) (日) (日)

고기님

Data: Wood et al., Phys Rev C46,5 (1992) 1903

GiBUU π benchmarks $\pi\pi$ photoproduction ω photoproduction e^- induc0000000000000000

e⁻ induced processes

Summary and Outlook

Scattering angles

 $T_{\pi} = 120, 150, 180 \text{ MeV}$

iBUU π benchmarks

e⁻ induced processes

Summary and Outlook

$\pi\pi$ photoproduction off nuclei

aiBUU π

 $\pi\pi$ photoproduction

ω photoproduction 00 e⁻ induced processe

Summary and Outlook

8

Experimental findings

$$R_{Pb/C} \sim \sigma_{Pb}/\sigma_{C} = \sigma(High \ \rho_{eff})/\sigma(Iow \ \rho_{eff})$$

"non- σ -channel"

" σ channel"

J. G. Messchendorp et al., Phys. Rev. Lett. 89 (2002)

e⁻ induced processes

Summary and Outlook

Theoretical descriptions

 Linear σ model, NJL: σ-meson as chiral partner of the pion Expect lowering of the mass due to chiral symmetry restauration in the medium

Bernard et al. PRL 59(1987); Hatsuda et al. PRL 82 (1999)

• σ as dynamically generated pole in the $\pi\pi$ scattering amplitude

Oller, Oset et al., PRD 59 (1999)

Shift due to strong P-wave couplings

Roca et al., Phys. Lett. B541 (2002)

Incoherent final state rescattering of the pions

Our Model

Initial state

• Microscopic model for $\gamma N \rightarrow N' \pi \pi$ as event generator

Tejedor, Oset, NPA 600 (96); Nacher et al , NPA 695 (01)

- Total cross sections scaled to match experiment
- No medium modifications in the propagators
- Consider Fermi motion of nucleons

Final State

Final state by GiBUU transport model

 $\pi\pi$ photoproduction

ω photoproduction
 οο

e⁻ induced processes

Summary and Outlook

Mass distribution, 400 MeV $< E_{\gamma} < 500$ MeV

ロ> < @> < E> < E> < E

 $\pi\pi$ photoproduction

ω photoproduction
 οο

e⁻ induced processes

Summary and Outlook

Mass distribution, 400 MeV $< E_{\gamma} < 500$ MeV

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\pi\pi$ photoproduction

ω photoproduction
 οο

e⁻ induced processes

Summary and Outlook

Mass distribution, 400 MeV $< E_{\gamma} < 500$ MeV

 $\pi\pi$ photoproduction

ω photoproduction
 οο

e⁻ induced processes

Summary and Outlook

Final state effects - details

Rescattering leads to enhancement at low masses

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Mostly surface \rightarrow low effective densities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

GiBUU π benchmarks

 $\pi\pi$ photoproduction

ω photoproduction 00 e⁻ induced processes

Summary and Outlook

Latest experimental results: $\gamma Ca \rightarrow X\pi\pi$

F. Bloch, B. Krusche et al., EPJ A32:219,2007. ⇒ Data also compatible with FSI effects.

ω photoproduction
 00

e⁻ induced processes

Summary and Outlook

Uncertainties

Elementary data

- ▶ Problem due to uncertain $\gamma n \rightarrow X$ cross sections.
- Errors up to 20% solely due to elementary input
- CB-ELSA TAPS: new data on deuterium
- Final state interactions
 - Possibility to suppress extreme low-energetic pions ?!

ω photoproduction
 00

e⁻ induced processes

Summary and Outlook

Uncertainties

Elementary data

- ▶ Problem due to uncertain $\gamma n \rightarrow X$ cross sections.
- Errors up to 20% solely due to elementary input
- CB-ELSA TAPS: new data on deuterium
- Final state interactions
 - Possibility to suppress extreme low-energetic pions ?!

GiBUU π benchm

e⁻ induced processes

Summary and Outlook

ω photoproduction

Summary and Outlook

ω photoproduction: $γA \rightarrow (ω \rightarrow π^0 γ)X$

Determine ω self energy via comparison of BUU and experiment

Parametrization of real part

$$m_{\omega}^{\star} = m_{\omega}^0 \left(1 + \alpha rac{
ho}{
ho_0}
ight)$$

Invariant mass reflects A:

theory: P. Muehlich et al., NP A780:187-205 data: D. Trnka et al., PRL 94:192203 Parametrization of imaginary part

$$\Gamma_{\omega}^{\star} = \mathbf{K} \rho \mathbf{v}_{rel} \sigma_{\omega N}$$

Transparency $T_A \sim \sigma_{\gamma A} / \sigma_{\gamma^{12}C} \rightarrow$ absorption strength \leftrightarrow lifetime \leftrightarrow inelastic width

 $\mathbf{K} \simeq \mathbf{1.75} \Rightarrow \Gamma(p = \mathbf{1} \, GeV) \simeq 150 \, \mathrm{Me}^{-1}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\pi\pi$ photoproduction

e⁻ induced processes

Summary and Outlook

ω photoproduction: $\gamma A \rightarrow (\omega \rightarrow \pi^0 \gamma) X$

theory: P. Muehlich et al., NP A780:187-205 data: D. Trnka et al., PRL 94:192203

▲□▶▲□▶▲□▶▲□▶ 三国社 のへ⊙

Summary and Outlook

ω photoproduction: $γA \rightarrow (ω \rightarrow π^0 γ)X$

Determine ω self energy via comparison of BUU and experiment

Parametrization of real part

$$m_{\omega}^{\star} = m_{\omega}^0 \left(1 + \alpha rac{
ho}{
ho_0}
ight)$$

Invariant mass reflects A:

theory: P. Muehlich et al., NP A780:187-205 data: D. Trnka et al., PRL 94:192203 Parametrization of imaginary part

$$\Gamma_{\omega}^{\star} = \mathbf{K} \rho \mathbf{v}_{rel} \sigma_{\omega N}$$

Transparency $T_A \sim \sigma_{\gamma A} / \sigma_{\gamma^{12}C} \rightarrow$ absorption strength \leftrightarrow lifetime \leftrightarrow inelastic width

 $\mathbf{K} \simeq \mathbf{1.75} \Rightarrow \Gamma(p = \mathbf{1} \, GeV) \simeq 150 \, \mathrm{Me}^{-1}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

UU π benchmarks ππ p 0 000000 000

 $\pi\pi$ photoproduction

e⁻ induced processes

Summary and Outlook

 ω photoproduction: $\gamma A \rightarrow (\omega \rightarrow \pi^0 \gamma) X$

Transparency $T_A \sim \sigma_{\gamma A} / \sigma_{\gamma^{12}C}$ $E_{\gamma} = 1.2 - 2.2 \text{ GeV}$

theory: P. Muehlich et al. data: D. Trnka et al., preliminary (talks tommorow afternoon!!)
e⁻ induced processes

Summary and Outlook

ω photoproduction: $γA \rightarrow (ω \rightarrow π^0 γ)X$

Determine ω self energy via comparison of BUU and experiment

Parametrization of real part

$$m_{\omega}^{\star} = m_{\omega}^0 \left(1 + \alpha rac{
ho}{
ho_0}
ight)$$

Invariant mass reflects A:

theory: P. Muehlich et al., NP A780:187-205 data: D. Trnka et al., PRL 94:192203 Parametrization of imaginary part

$$\Gamma_{\omega}^{\star} = \mathbf{K} \rho \mathbf{v}_{rel} \sigma_{\omega N}$$

Transparency $T_A \sim \sigma_{\gamma A} / \sigma_{\gamma^{12}C} \rightarrow$ absorption strength \leftrightarrow lifetime \leftrightarrow inelastic width

 $\mathbf{K} \simeq \mathbf{1.75} \Rightarrow \Gamma(p = \mathbf{1} \, GeV) \simeq 150 \, \mathrm{Me}^{-1}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

e⁻ induced processes

ω meson in nuclear matter

Microscopic determination of ω in-medium self energy

P. Muehlich et al., NP A780:187-205

Low density theorem: $\Pi_{\omega}^{med} = \rho T_{\omega N \to \omega N}$ Forward scattering amplitude: K-matrix solution of Bethe-Salpeter eq.

GiBUU π ben 000 0000 ππ photoproductio

ω photoproduction
 00

e⁻ induced processes

Summary and Outlook

e^- induced processes

e[−] induced processes ●○○ Summary and Outlook

e^- induced processes in the resonance region

Motivation

 π benchmarks

- Properties of the nucleon in the medium
 - Collisional broadening
 - Effective model for the nuclear ground state
- Resonance excitations in the medium
 - Melting of the resonances
- Connection to high energy electron scattering
 - K. Gallmeister: "Time dependence of hadronization" (friday 11:25)
 - Bloom Gilman duality
- e^- as benchmark for ν induced processes

arXiv:0707.0232 [nucl-th], in press

GiBUU π benchmarks

e[−] induced processes

Summary and Outlook

Our model for the initial vertex

- Impulse approximation
- In-medium kinematics (i.e. potentials included)

Quasi-elastic scattering

$$J_{\text{QE}}^{\mu} = F_1 \gamma^{\mu} + \frac{i}{2m_0} F_2 \sigma^{\mu\nu} q_{\nu}$$
$$+ \frac{F_1(m_i - m_f)}{q^2} q^{\mu}$$

 Assume F₁(Q²), F₂(Q²) same as in vacuum (BBBA05)

Pion production

$$J^{\mu}_{\pi} = \sum_{i=1}^{6} A_i M^{\mu}_i$$

• MAID (Tiator et al.)

Resonance production

FF \Leftrightarrow MAID helicity amplitudes

 Δ , $P_{11}(1440)$, $D_{13}(1520)$, $S_{11}(1535)$, $S_{31}(1620)$,

 $S_{11}(1650), D_{15}(1675), F_{15}(1680), D_{33}(1700),$

 $P_{13}(1720), F_{35}(1905), P_{31}(1910), F_{37}(1950)$

 $\pi\pi$ photoproduction

 ω photoproduction

Beam energy 700 MeV

e⁻ induced processes 000

Summary and Outlook

Results: Inclusive cross sections off ¹⁶0

 $Q^2 \leq 0.137 \text{ MeV}^2$

Data: M. Anghinolfi et al., NPA 602 (1996); ADONE(Frascati)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショ

 $\pi\pi$ photoproduction ω photoproduction e⁻ induced processes 000

Summary and Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショ

Results: Inclusive cross sections off ¹⁶0

 $Q^2 \leq 0.328 \text{ MeV}^2$

Beam energy 1080 MeV

Data: M. Anghinolfi et al., NPA 602 (1996); ADONE(Frascati)

 $\pi\pi$ photoproduction

 ω photoproduction

e⁻ induced processes 000

Summary and Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショー ショー

Results: Inclusive cross sections off ¹⁶0

 $Q^2 \leq 0.632 \text{ MeV}^2$

Data: M. Anghinolfi et al., NPA 602 (1996); ADONE(Frascati)

GiBUU π benchmarks $\pi\pi$ photoproduction ω photoproduction e^- induced processe00000000000000

Summary and Outlook

Summary & Outlook

- e⁻ scattering
 - Satisfying description of total inclusive cross sections
 - Outlook : Pion production

http://gibuu.physik.uni-giessen.de

Summary & Outlook

π-benchmarks

- Pion DCX described successfully for $E_{kin} \gtrsim 30 \text{ MeV}$
- ► Large influence of neutron skins (→ PREX)
- $\pi\pi$ photoproduction
 - New analysis also compatible to FSI interpretation
 - Pions stem from surface, small effective density
- ω photoproduction
 - ▶ Theory $(m_{\omega} \uparrow)$ and experiment $(m_{\omega} \downarrow)$ contradict
- e⁻ scattering
 - Satisfying description of total inclusive cross sections
 - Outlook : Pion production

http://gibuu.physik.uni-giessen.de

Backup Slides P

Pions - details

DCX - details

 $\pi\pi$ production - detai

e⁻ scattering - details

Thank you!

Deutsche Forschungsgemeinschaft

Backup Slides

Pions - details

DCX - details

 $\pi\pi$ production - detail

e⁻ scattering - details

Pions - details

Backup Slides	-		_			\sim			
Daurub Silues			\sim	Z 1 1	n	9	10		C
		a	ы	٦u	U.	01	ıu	C	a

 $\pi\pi$ production - details

e⁻ scattering - details

Pion-nucleon scattering

$$\sigma_{\pi N \to \pi N} = \sigma_{\pi N \to R \to \pi N} + \sigma_{\pi N \to \pi N}^{\rm BG}$$

◆□▶ ◆□▶ ◆ヨ▶ ◆□▶ ◆□▶ ◆□▶

Backup Slides Pior

Pions - details

DCX - details

 $\pi\pi$ production - details

e⁻ scattering - details

Pions in nuclear matter

Backup Slides	Pions - details	DCX - details	$\pi\pi$ production - details	e [—] scattering - details

Pions in nuclear matter

Basic checks

- Size of box: $(12 \text{fm})^3$
- Continuous boundary conditions
- Pions initialized within radius of 3.5fm in xy-plane at origin
- $\Delta t = 0.25 \frac{fm}{c},$ $T = 2.5 \frac{fm}{c}$
- 300 parallel ensembles with 100 pions/ensemble
- 6 sequential

DCX - details

 $\pi\pi$ production - details

e⁻ scattering - details

고나님

Mean free path

• Discrepancies in the literature

$$\lambda = \frac{\nu}{\Gamma}$$

Decrease of velocity due to repulsive potential

Pions - details

DCX - details

 $\pi\pi$ production - details

e⁻ scattering - details

- Semiclassical treatment causes problems for $E_{kin} \lesssim 20 \text{ MeV}$
- Classical not allowed region in phase space
- Importance of tunneling

DCX - details

 $\pi\pi$ production - details

e⁻ scattering - details

Comparison to other calculations

Optical Model

 Use QM-solution of dispersion relation

$$\lambda = \frac{1}{2\Im(p)}$$

Vacuum approximation

Backup Slides

DCX - details

 $\pi\pi$ production - detai

e⁻ scattering - details

DCX - details

DCX - details

 $\pi\pi$ production - detail

e⁻ scattering - details

Elementary DCX

 $\pi^- p \rightarrow \pi^0 n$ angular distribution in CM frame; data from CB: Sadler et al. (2004)

DCX - details

 $\pi\pi$ production - details

e⁻ scattering - details

Full versus parallel Ensemble π^+ Ca $\rightarrow X \pi^ \pi^{-}$ Ca $\rightarrow X \pi^{+}$ dơ/dΩ (µb/sr) 40 60 80 100120140160180200 40 60 80 100 120 140 160 180 200 $\pi^{+} Pb \rightarrow X \pi^{-}$ π^{-} Pb $\rightarrow X \pi^{+}$ 800 700 600 500 400 300 200 100 dơ/dΩ (μb/sr) 20 40 60 80 100120140160180200 40 60 80 100 120 140 160 180 200 θ(degree) θ(degree)

Backup Slides

DCX - details

 $\pi\pi$ production - details

e⁻ scattering - details

Scaling: DCX as simple 2-step process

Idea

• Surface process $\Rightarrow \sigma \sim A^{2/3}$

Assume two-step process

$$\sigma \sim \frac{Q(Q-1)}{(A-Q)(A-1)} A^{2/3}$$

Q = N for π^- Q = Z for π^+

Gram et al., Phys. Rev. Lett. 62(1989)

Backup Slides

DCX - details

 $\pi\pi$ production - details

e⁻ scattering - details

Scaling: DCX as simple 2-step process

Idea

• Surface process $\Rightarrow \sigma \sim A^{2/3}$

Assume two-step process

$$\sigma\sim rac{Q(Q-1)}{(A-Q)(A-1)}A^{2/3}$$

Q = N for π^- Q = Z for π^+ **So simple?**

FIG. 3. Total inclusive cross sections at 240 MeV (upper

Gram et al., Phys. Rev. Lett. 62(1989)

Backup Slides	Pions - details	DCX - details	$\pi\pi$ production - details	e ⁻ scattering - details
Scaling				

 \Longrightarrow It seems so easy, since medium effects (e.g. Coulomb, skins) cancel each other.

Backup Slides	Pions - details	DCX - details	$\pi\pi$ production - details	e ⁻ scattering - details

Energy distribution

Backup Slides Pions - details

DCX - details

 $\pi\pi$ production - details

e⁻ scattering - details

$\pi\pi$ production - details

sackup Sildes Plons - details DCA - details $\pi\pi$ production - details e scattering - details 000 00
--

Elementary cross sections

ヨヨ わすゆ

Backup Slides	Pions - details	DCX - details	$\pi\pi$ production - details	e ⁻ scattering - details

 $E_{\gamma} = 500 \text{ MeV}$

Backup Slides	Pions - details	DCX - details	$\pi\pi$ production - details	e ⁻ scattering - details
$\gamma n \rightarrow n_7$	$\tau^{-}\pi^{0}$			

Zabrodin et al., P. Pedroni

▲口 → ▲圖 → ▲ 돈 → 세 돈 → 트 돈

Backup Slides	Pions - details	DCX - details	$\pi\pi$ production - details	e ⁻ scattering - details

$$\gamma p \rightarrow p \pi^0 \pi^0$$

Backup Slides	Pions - details	DCX - details	$\pi\pi$ production - details	e ⁻ scattering - details

 $\gamma\,p{\rightarrow} n\pi^{+}\pi^{0}$

Backup Slides Pic

Pions - details

DCX - details

 $\pi\pi$ production - details

e⁻ scattering - details

e⁻ scattering - details

 $Q^2 \leqslant 0.137 \text{ MeV}^2$

Data: M. Anghinolfi et al., NPA 602 (1996); ADONE(Frascati)

 $Q^2 \leqslant 0.217 \text{ MeV}^2$

Data: M. Anghinolfi et al., NPA 602 (1996); ADONE(Frascati)

 $Q^2 \leqslant 0.328 \text{ MeV}^2$

Data: M. Anghinolfi et al., NPA 602 (1996); ADONE(Frascati)

 $Q^2 \leq 0.404 \text{ MeV}^2$

Beam energy 1200 MeV

Data: M. Anghinolfi et al., NPA 602 (1996); ADONE(Frascati)

 $Q^2 \leqslant 0.632 \text{ MeV}^2$

Data: M. Anghinolfi et al., NPA 602 (1996); ADONE(Frascati)

 $Q^2 \leqslant 0.137 \text{ MeV}^2$

Beam energy 700 MeV

Data: M. Anghinolfi et al., NPA 602 (1996); ADONE(Frascati)

 $Q^2 \leqslant 0.217 \text{ MeV}^2$

Beam energy 880 MeV

Data: M. Anghinolfi et al., NPA 602 (1996); ADONE(Frascati)

 $Q^2 \leqslant 0.328 \text{ MeV}^2$

Beam energy 1080 MeV

Data: M. Anghinolfi et al., NPA 602 (1996); ADONE(Frascati)

 $Q^2 \leqslant 0.404 \text{ MeV}^2$

Data: M. Anghinolfi et al., NPA 602 (1996); ADONE(Frascati)

 $Q^2 \leqslant 0.632 \text{ MeV}^2$

Beam energy 1500 MeV

Data: M. Anghinolfi et al., NPA 602 (1996); ADONE(Frascati)