Single Spin Asymmetry at Large x_F and ${m k}_\perp$ Matti Järvinen University of Southern Denmark, Odense a EINN 2007, Milos, Greece September 15, 2007 [Paul Hoyer and MJ, hep-ph/0611293] ^aUntil September 1: University of Helsinki #### **Outline** Single spin asymmetry in $p^\uparrow p \to \pi X$ as a coherence effect - ☐ Long motivation - Experimental data - ullet Previous studies of large x_F coherence effects - $\square p^{\uparrow}p \to \pi X$ at large x_F : sample calculation - ☐ Conclusion ## Transverse SSA in $p^\uparrow p o \pi(x_F,k_\perp) + X$ We concentrate on forward pions (large x_F) Pion transverse momentum k_{\perp} sets the hard scale $$A_N(x_F, k_\perp) \propto \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$ ## Motivation: Data for $p^{\uparrow}p \to \pi(x_F, \mathbf{k}_{\perp}) + X$ FNAL-E704 data ($\sqrt{s}=20{\rm GeV}$, $k_{\perp}\sim$ 1-2 ${\rm GeV}$): [PLB261(1991)201, PLB264(1991)462] 0.6 0.40.2 -0.2-0.40.2 0.4 0.8 0.6 $X_{\rm F}$ STAR data: A_N for π^0 production at $\sqrt{s}=200{ m GeV}$ [arXiv:0705.3483] ### Motivation: Failure of PQCD for forward π^0 $x_F \simeq 0.8 \Rightarrow$ Distribution and fragmentation functions with $x, z \sim 0.9$ NLO PQCD fails to produce the total cross-section for forward $pp \to \pi^0 X$ for $\sqrt{s}=52.8$ GeV [Bourrely, Soffer EPJC36(2004)371] #### Motivation: PQCD predictions and STAR results STAR total cross section is consistent with PQCD However, the predicted behavior $A_N \propto \Lambda_{QCD}/k_{\perp}$ is not seen ### Motivation: Coherence effects at large x_F - lacktriangledown Large x_F coherence effects studied in (unpolarized) Drell-Yan $\pi p ightarrow \mu^+ \mu^- X$ - $lacktrianglesize Physics at large <math>x_F$ involves the full (multiquark) projectile wave function: Single quark factorization fails [Berger & Brodsky, PRL42(1979)940] [Conway et al., PRD39(1989)92] \Box Expected longitudinal polarization of the γ^* at large x_F later seen in experiments #### Large x_F dynamics We study $$p^\uparrow p o \pi(x_F, {m k}_\perp) + X$$ for $k_\perp o \infty$ with $k_\perp^2 (1-x_F)$ fixed, $k_\perp^2 (1-x_F) \sim \Lambda_{QCD}^2$ → No single quark factorization Soft part of the amplitude (scale $\Lambda_{QCD}^2/(1-x_F)$) becomes coherent with the hard interactions (scale k_\perp^2) \Rightarrow naturally large A_N ? # A mechanism for a sizeable A_N in $p^\uparrow p o \pi X$ \Box Overall coherence at fixed $k_{\perp}^{2}(1-x_{F})$ Recall: $A_N \propto { m Im} \left[{\cal M}_{+-} {\cal M}_{++}^* \right] \Rightarrow$ Helicity flip and dynamical phase needed ### A sample calculation - ☐ We drop one quark from the proton and the gluon exchange inside the pion - oxdot Only a single diagram, Abelian gluons and $s o \infty$ - \Box The soft quark-antiquark pair has a (constituent) mass $M \sim \Lambda_{QCD}$ to allow the spin flip, otherwise massless quarks #### Conclusion - lacksquare Multiquark effects arise at $k_{\perp}^2(1-x_F)$ fixed - ☐ If soft and hard parts of the amplitudes are coherent large asymmetries may arise naturally - lacktriangle Our mechanism for A_N supported by the observed k_\perp dependence