Two-Hadron Interactions on the Lattice: $N N$ and $\pi \pi$

Hadron Physics on the Lattice

 IASA: EINN 2007
André Walker-Loud

University of Maryland I Ith September, 2007

Silas R. Beane (U. New Hampshire)
Tom C. Luu (LLNL)
Kostas Orginos (William and Mary / JLAB)
Assumpta Parreno (Barcelona)
Martin J. Savage (U.Washington Seattle)
Aaron Torok (U. New Hampshire)

Jiunn-Wei Chen (National Taiwan U.)
Donal O'Connell (IAS Princeton)
Ruth S.Van de Water (FermiLAB)

Paulo F. Bedaque (U. Maryland)

Preview

O Motivation

O Two-Hadrons on the Lattice
4-Point Green's Functions in Euclidean Space-Time
2-Particle Interaction Energy and Lüshcer's Method
$\bigcirc \quad I=2 \pi \pi$ Scattering
O Numerical Calculation
O Mixed Actions and Chiral Extrapolations
$\bigcirc I=1 K K$ Scattering $I=3 / 2 K \pi$ Scattering f_{K} / f_{π}
$\bigcirc \mathcal{N N} Y \mathcal{N}$
O Restless Pions: Orbifold boundary conditions and noise suppression in Lattice QCD
\bigcirc Conclusions

Motivations

Motivations

OLattice QCD has entered the precision era - at least for Gold-Plated quantities
〇For two-pion (two-meson) interactions, lattice QCD is competitive with the best theoretical and phenomenological determinations of the non-scalar scattering channel
OOne would like to understand nuclear phenomenology from first principles a direct connection with QCD is needed

A necessary first step is understanding the two-nucleon system can one find the deuteron?
for what values of the quark masses does the deuteron remain finely- tuned
Oln particular, lattice QCD has a great opportunity to make a large impact on understanding the interactions of strange hadrons

RHIC: STAR is beginning to use kaon interferometery
Neutron star properties: kaon-condensation? phase-diagram?
OPersonally: scattering is just damn cool!

Two-Hadrons on the Lattice

Maiani-Testa No-Go-Theorem

S-Matrix elements can not be extracted away from threshold from infinite volume Euclidean correlation functions ($n \geq 3$)

Easy to understand
O Minkowski space; S-matrix elements are complex functions above kinematic thresholds
O Euclidean space; S-matrix elements are real functions for all kinematics - lost information??

Volume Dependence

- Luscher's method for extracting infinite volume scattering parameters from the volume dependence of 2-particle states

K. Huang, C.N. Yang
H.W. Hamber, E. Marinari,
G. Parisi, C. Rebbi
M. Lüscher
M. Lüscher
S.R. Beane, P.F. Bedaque
A. Parreno, M.J. Savage
Phys. Rev 105 (1957)
NPB 225 (1983)
Comm. Math. Phys. 105 (1986)
NPB 354 (1991)
PLB 585 (2004)

2-hadron states in Finite Volume

Luscher's method for extracting infinite-volume scattering parameters essentially amounts to solving the eigenvalue equation,

$$
k \cot \delta(k)=\frac{1}{\pi L} \sum_{\vec{n}} \frac{f(\vec{n})}{\vec{n}^{2}-\left(\frac{k L}{2 \pi}\right)^{2}}
$$

For some regular function, $f(\vec{n})$. This equation can be expanded for large volume (compared to the scattering length, and $f(\vec{n})=1$), and solved for the energy difference from threshold,

$$
\Delta E_{0} \simeq-\frac{4 \pi a_{0}}{m \mathrm{~L}^{3}}\left[1+c_{1} \frac{a_{0}}{\mathrm{~L}}+c_{2}\left(\frac{a_{0}}{\mathrm{~L}}\right)^{2}+\mathcal{O}\left(\frac{1}{\mathrm{~L}^{3}}\right)\right]
$$

This method also works for large scattering lengths, as in the nucleon-nucleon system, where the box size is still larger than the range of the interaction

$$
a \gg L \quad, \quad L>\frac{1}{m_{\pi}} \quad \begin{aligned}
& \text { S.R. Beane, P.F. Bedaque } \\
& \text { A. Parreno, M.J. Savage }
\end{aligned}
$$

$$
I=2 \pi \pi \text { scattering }
$$

$I=2 \pi \pi$ scattering

Why not $I=0 \pi \pi$ Scattering?
O Numerically much more expensive - requires all-to-all propagators (disconnected diagrams)

O For mixed-action schemes (or partially quenched) the unitarity violations are much more problematic, as the unphysical particles can go on shell in the s-channel diagrams, invalidating the use of Lüscher's method.

$I=2 \pi \pi$ scattering

Luscher's method relies upon unitarity (optical theorem)

For $\mathrm{I}=2$ pion scattering - the only particles which participate in the optical theorem are the $\pi^{+} s$
\Rightarrow This relation holds in a partially quenched - mixed action theories

No hairpin diagrams (unitarity violating effects) in s-channel diagram for particles below 4-pi inelastic threshold.

$I=2 \pi \pi$ scattering

Quenched	
Sharpe, Gupta, Kilcup	NPB 383 (1992)
Gupta, Patel, Sharpe	PRD 48 (I993)
Kuramashi, Fukujita, Mino, Okawa, Ukawa	PRL 71 (1993)
	hep-lat/9301016
	PRL 73 (1994)
	hep-lat/9501024
Fiebig, Rabitsch, Markum, Mihaly	hep-lat/9911025
Liu, Zhang, Chen, Ma	hep-lat/0109010
	NPB 624 (2002)
Gattringer, Hierl, Pullirsch	hep-lat/0409064
JLQCD	PRD 66 (2002)
CP-PACS	PRD 67 (2003)
	hep-lat/0503025
	PRD 71 (2005)
Dynamical	hep-lat/0703015
	PRD 70 (2004)
CP-PACS 2 flavors NPLQCD 2+l flavors	PRD 73 (2006)
NPLQCD 2+1 flavors	arXiv:0706.3026

$I=2 \pi \pi$ scattering \quad Resources

Mixed Action (hybrid) calculation using domain-wall valence fermions and rooted staggered sea fermions with $2+\mid$ dynamical fermion flavors

- scheme developed by LHP Collaboration

Coarse MILC $(b \sim 0.125 \mathrm{fm})$	Dimensions	$b m_{l}$	$b m_{s}$	$b m_{l}^{d w f}$	$b m_{s}^{d w f}$	$m_{\pi}(\mathrm{MeV})$	$m_{K}(\mathrm{MeV})$	$N_{c f g} \times N_{\text {source }}$
2064f21b676m007m050	$20^{3} \times 64$	0.007	0.050	0.0081	0.081	290	580	468×16
2064f21b676m010m050	$20^{3} \times 64$	0.010	0.050	0.0138	0.081	350	595	658×20
2064f21b679m020m050	$20^{3} \times 64$	0.020	0.050	0.0313	0.081	490	640	486×24
2064f21b681m030m050	$20^{3} \times 64$	0.030	0.050	0.0478	0.081	590	675	564×8
Fine MILC $(b \sim 0.09 \mathrm{fm})$								
2896f2b709m0062m031	$28^{3} \times 96$	0.0062	0.031	0.0080	0.0423	320	538	506×1

$L \sim 2.5 \mathrm{fm}$

$I=2 \pi \pi$ scattering \quad Resources

Mixed Action (hybrid) calculation using domain-wall valence fermions and rooted staggered sea fermions with $2+\mid$ dynamical fermion flavors

- scheme developed by LHP Collaboration

Coarse MILC $(b \sim 0.125 \mathrm{fm})$	Dimensions	$b m_{l}$	$b m_{s}$	$b m_{l}^{d w f}$	$b m_{s}^{d w f}$	$m_{\pi}(\mathrm{MeV})$	$m_{K}(\mathrm{MeV})$	$N_{c f g} \times N_{\text {source }}$
2064f21b676m007m050	$20^{3} \times 64$	0.007	0.050	0.0081	0.081	290	580	468×16
2064f21b676m010m050	$20^{3} \times 64$	0.010	0.050	0.0138	0.081	350	595	658×20
2064f21b679m020m050	$20^{3} \times 64$	0.020	0.050	0.0313	0.081	490	640	486×24
2064f21b681m030m050	$20^{3} \times 64$	0.030	0.050	0.0478	0.081	590	675	564×8
Fine MILC $(b \sim 0.09 \mathrm{fm})$								
2896f2b709m0062m031	$28^{3} \times 96$	0.0062	0.031	0.0080	0.0423	320	538	506×1

$$
L \sim 2.5 \mathrm{fm}
$$

Peculiarities of staggered fermion formulation lead to 5 tastes of pions, with different masses. The mass splitting between these multiplets are lattice spacing artifacts, vanishing in the continuum limit.

One of these pions, the taste-5 pion, is the pseudo-Goldstone mode of a remnant axial symmetry, and thus is protected from additive lattice spacing dependent mass renormalizations. Consequently, this taste-5 pion is the lightest, and the pion used to tune the domain-wall valence pion mass to (within a few percent).

$I=2 \pi \pi$ scattering 2005 - first dynamical 2+1 flavor

$I=2 \pi \pi$ scattering 2007 - precision results arXiv:0706.3026

$I=2 \pi \pi$ scattering 2007 - precision results

Can address all sources of systematic error (except for staggered action)
O Mixed Action Extrapolation formula (including estimates of NNLO)
O Exponential Corrections to Lüscher's formula
O Residual chiral symmetry breaking from the domain-wall action
O Effective Range corrections

$I=2 \pi \pi$ scattering 2007 - precision results

$$
m_{\pi} a_{\pi \pi}^{I=2}=-0.04330 \pm 0.00042 \begin{gathered}
\begin{array}{c}
\mathrm{NPLQCD}(\mathrm{AW-L}) \\
\text { arXiv:0706. } 3026
\end{array}
\end{gathered}
$$

$I=2 \pi \pi$ scattering 2007 - precision results

$I=2 \pi \pi$ scattering 2007-precision results

Mixed Action χ PT

O J-W. Chen, D. O’Connnell, R.S.Van de Water, A.W-L

O J-W. Chen, D. O'Connnell, A.W-L

O J-W. Chen, D. O'Connnell, A.W-L
K.Orginos, A.W-L

PRD 73(2006)

 (hep-lat/05I0024)PRD 75(2007) (hep-lat/06I I003) arXiv:0706.0035
arXiv:0705.0572

Mixed Actions (MA) and Partial Quenching (PQ)

Mixed Actions (MA) and Partial Quenching (PQ)

Why consider PQ or

MA theories?

O simulating light sea quarks numerically costly: valence quarks are cheaper

O chiral symmetry of GinspargWilson quarks ideal: currently prohibitavely costly

O larger parameter space to match
 effective theory to: QCD limit of theory

O provide means to test effective field theories (EFT):
do PQ and MA EFTs completely encode all the unitarity violation which is manifest in the low energy dynamics?

Why consider PQ or

MA theories?

O simulating light sea quarks numerically costly: valence quarks are cheaper

O chiral symmetry of GinspargWilson quarks ideal: currently prohibiavely

O larger parameter space to match
 effective theory to: QCD limit of theory

O provide means to test effective field theories (EFT):
do PQ and MA EFTs completely encode all the unitarity violation which is manifest in the low energy dynamics?

Mixed Action theories with Ginsparg-Wilson valence quarks

most lattice discretization schemes violate chiral symmetry
Wilson
clover Wilson

Ginsparg-Wilson fermions have a lattice-chiral symmetry

domain-wall	D.B. Kaplan	Phys.Lett.B (I992)
	Y. Shamir	Nucl.Phys.B (I993)
	V. Furman Y. Shamir	Nucl.Phys.B (I995)
overlap	R. Narayanan H. Neuberger	
	PRL (I993)	
	Nucl.Phys.B (I994, 1995)	

Ginsparg-Wilson fermions numerically expensive

MA EFT at Leading Order (LO)

Bar, Rupak, Shoresh
PRD 67 (2003)
PRD 70 (2004)

Ginsparg-Wilson valence
Wilson sea

Bar, Bernard, Rupak, Shoresh PRD 72 (2005)

Ginsparg-Wilson valence
Staggered sea

$$
\text { today } \begin{aligned}
& \text { Ginsparg-Wilson valence } \\
& \text { anything sea }
\end{aligned}
$$

Mixed Action Effective Field Theory

Symmetries of mixed action

Valence Fermions: chiral symmetry, CPT, O(4)
Sea Fermions: chiral symmetry, CPT, O(4)

Ghost Fermions: chiral symmetry, CPT, O(4) introduced to remove valence contributions from dynamical quark-antiquark loops: mathematical "trick"

MA EFT at LO: Meson Masses

LO Lagrangian

$$
\mathcal{L}=\frac{f^{2}}{8} \operatorname{str}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right)+\frac{f^{2} B}{4} \operatorname{str}\left(\Sigma m_{Q}^{\dagger}+m_{Q} \Sigma^{\dagger}\right)
$$

$$
\mathcal{L}_{M A}=b^{2}\left(\mathcal{U}_{V S}-\mathcal{U}_{s e a}\right)
$$

form of mixed valence-sea potential is universal

$$
\mathcal{U}_{V S}=C_{M i x} \operatorname{str}\left(T_{3} \Sigma T_{3} \Sigma^{\dagger}\right) \quad T_{3}=\mathcal{P}_{S}-\mathcal{P}_{V}
$$

valence-valence $\quad m_{v v}^{2}=2 B_{0} m_{v}$

$$
\begin{array}{rll}
\text { valence-sea } & m_{v s}^{2}=B_{0}\left(m_{v}+m_{s}\right)+b^{2} \Delta_{M i x} & \Delta_{M i x}=\frac{16 C_{M i x}}{f^{2}} \\
\text { sea-sea } & m_{s s}^{2}=2 B_{0} m_{s}+b^{2} \Delta_{s e a} &
\end{array}
$$

$I=2 \pi \pi$ scattering

$I=2 \pi \pi$ scattering

$I=2 \pi \pi$ scattering

Adding mixed action and partial quenching effects

$$
m_{\pi} a_{2}=-\frac{m_{u u}^{2}}{8 \pi f^{2}}\left\{1+\frac{m_{u u}^{2}}{(4 \pi f)^{2}}\left[4 \ln \left(\frac{m_{u u}^{2}}{\mu^{2}}\right)+4 \frac{\tilde{m}_{j u}^{2}}{m_{u u}^{2}} \ln \left(\frac{\tilde{m}_{j u}^{2}}{\mu^{2}}\right)+l_{\pi \pi}^{\prime}(\mu)\right.\right.
$$

$$
\left.-\frac{\tilde{\Delta}_{P Q}^{2}}{m_{u u}^{2}}\left[\ln \left(\frac{m_{u u}^{2}}{\mu^{2}}\right)\right]-\frac{\tilde{\Delta}_{P Q}^{4}}{6 m_{u u}^{4}}\right]
$$

$$
\left.+\frac{\tilde{\Delta}_{P Q}^{2}}{(4 \pi f)^{2}} l_{P Q}^{\prime}(\mu)+\frac{b^{2}}{(4 \pi f)^{2}} l_{b^{2}}^{\prime}(\mu)\right\}
$$

$$
\tilde{\Delta}_{P Q}^{2}=m_{j j}^{2}+\Delta_{s e a}(b)-m_{u u}^{2}
$$

$$
\tilde{\Delta}_{P Q}^{2}=m_{j j}^{2}+b^{2} \Delta_{I}-m_{u u}^{2} \quad \text { staggered sea }
$$

$$
\tilde{\Delta}_{P Q}^{2}=m_{j j}^{2}+b W_{0}-m_{u u}^{2} \quad \text { Wilson sea }
$$

$$
\tilde{m}_{j u}^{2}=B_{0}\left(m_{u}+m_{j}\right)+b^{2} \Delta_{M i x}
$$

Every sickness expected is apparent:
partial quenching ($\tilde{\Delta}_{P Q}$) lattice discretization effects (b)

$I=2 \pi \pi$ scattering

lattice-physical parameters (mass and decay constant measured directly from correlators) the scattering length is given by

$$
m_{\pi} a_{\pi \pi}^{I=2}=-\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left\{1+\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left[3 \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)-1-l_{\pi \pi}^{I=2}(\mu)\right]\right\}
$$

$I=2 \pi \pi$ scattering

Adding mixed action and partial quenching effects,

$$
\begin{aligned}
m_{\pi} a_{\pi \pi}^{I=2}=-\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left\{1+\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left[3 \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right.\right. & \left.-1-l_{\pi \pi}^{I=2}(\mu)\right] \\
& \left.-\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} \frac{\tilde{\Delta}_{P Q}^{4}}{6 m_{\pi}^{4}}\right\}
\end{aligned}
$$

The explicit dependence on the lattice spacing has exactly cancelled - up to a calculable effect from the hairpin interactions!!!

This is independent of the type of sea-quarks

MA EFT at next-to-leading order (NLO)

J-W. Chen, D. O'Connell, AW-L PRD 75(2007)

MA EFT at NLO:

$I=2 \pi \pi$ scattering length in $\mathrm{SU}(3)$ and $\mathrm{SU}(2)$:
$\operatorname{SU}(3)$: chiral symmetry dictates that any strange-quark mass dependence at NLO must be of the form $m_{\pi}^{2} m_{K}^{2}$
$\mathbf{S U (2) :} \quad m_{\pi} a_{2}^{Q C D}=-\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left\{1+\frac{m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}\left[3 \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)-1+l_{\pi \pi}(\mu)\right]\right\}$

there can not be any strange-quark mass dependence in the on-shell renormalized scattering length in $\mathrm{SU}(3)$
observed by M. Knecht, B. Moussallam, J. Stern, N.H. Fuchs
Nucl.Phys.B (I995)

MA EFT at NLO

O Through the order we are working, $m_{\pi}^{4}, b^{2} m_{\pi}^{2}, b^{4}$ all problematic lattice-spacing artifacts can be absorbed as multiplicative renormalizations of the continuum low-energy constants, the chiral condensate, the pion decay constant and the Gasser-Leutwyler constants
$\delta \mathcal{L}_{G L}=4 B_{0} L_{4} \operatorname{str}\left(\partial_{\mu} \Sigma P_{V} \partial^{\mu} \Sigma^{\dagger} P_{V}\right) \operatorname{str}\left(m_{q}\right)+16 B_{0}^{2} L_{6} \operatorname{str}\left(m_{q} \Sigma^{\dagger} P_{V}+P_{V} \Sigma m_{q}^{\dagger}\right) \operatorname{str}\left(m_{q}\right)$.
$\delta \mathcal{L}_{M A}=b^{2} L_{b^{2}}^{\partial} \operatorname{str}\left(\partial_{\mu} \Sigma P_{V} \partial^{\mu} \Sigma^{\dagger} P_{V}\right) \operatorname{str}\left(P_{S} f(\Sigma) P_{S} f^{\prime}\left(\Sigma^{\dagger}\right)\right)$

$$
+b^{2} L_{b^{2}}^{m_{q}} \operatorname{str}\left(m_{q} \Sigma^{\dagger} P_{V}+P_{V} \Sigma m_{q}^{\dagger}\right) \operatorname{str}\left(P_{S} g(\Sigma) P_{S} g^{\prime}\left(\Sigma^{\dagger}\right)\right)
$$

Use of a lattice-physical (on-shell) renormalization scheme absorbs all sea-quark effects into the LO parameters, f, B_{0} and thus removes any explicit sea-quark dependence from meson scattering processes

O This holds for all mesonic quantities!!!
O Caution: This does breakdown at the next order - we understand how

MA from $P Q$

J-W. Chen, D. O'Connell, AW-L arXiv:0706.0035

MA EFT at NLO: Symanzik Action

Mixed Action effects break Symmetry Between Valence and Sea Fermions

$$
\begin{aligned}
& S U\left(N_{v}+N_{s} \mid N_{v}\right)_{L} \otimes S U\left(N_{v}+N_{s} \mid N_{v}\right)_{R} \underbrace{\longrightarrow}_{\substack{b \neq 0}} \\
& \quad S U\left(N_{v} \mid N_{v}\right)_{L} \otimes S U\left(N_{v} \mid N_{v}\right)_{R} \otimes S U\left(N_{s}\right)_{L} \otimes S U\left(N_{s}\right)_{R}
\end{aligned}
$$

Symanzik Lagrangian $\mathcal{O}\left(b^{2}\right)$ contains terms which distinguish valence and sea fermions

$$
\begin{aligned}
& \mathcal{L}_{M i x}^{\left(b^{2}\right)}=b^{2} C_{M i x}^{V}\left(\bar{Q} \gamma_{\mu} \mathcal{P}_{V} Q\right)\left(\bar{Q} \gamma_{\mu} \mathcal{P}_{S} Q\right)+b^{2} C_{M i x}^{A}\left(\bar{Q} \gamma_{\mu} \gamma_{5} \mathcal{P}_{V} Q\right)\left(\bar{Q} \gamma_{\mu} \gamma_{5} \mathcal{P}_{S} Q\right) \\
& \mathcal{P}_{S}^{2}=\mathcal{P}_{S} \quad \text { Sea projector } \\
& \mathcal{P}_{V}^{2}=\mathcal{P}_{V} \quad \text { Valence projector } \quad \mathcal{P}_{S}+\mathcal{P}_{V}=1
\end{aligned}
$$

MA EFT at NLO: Hadronic Lagrangian: spurion analysis

$$
\begin{gathered}
\mathcal{L}_{M i x}^{\left(b^{2}\right)}=b^{2} C_{M i x}^{V}\left(\bar{Q} \gamma_{\mu} \mathcal{P}_{V} Q\right)\left(\bar{Q} \gamma_{\mu} \mathcal{P}_{S} Q\right)+b^{2} C_{M i x}^{A}\left(\bar{Q} \gamma_{\mu} \gamma_{5} \mathcal{P}_{V} Q\right)\left(\bar{Q} \gamma_{\mu} \gamma_{5} \mathcal{P}_{S} Q\right) \\
\mathcal{P}_{V(S)}^{L} \rightarrow L \mathcal{P}_{V(S)}^{L} L^{\dagger} \downarrow \quad \mathcal{P}_{V(S)}^{R} \rightarrow R \mathcal{P}_{V(S)}^{R} R^{\dagger} \\
\mathcal{L}_{M i x}^{\left(b^{2}\right)}=b^{2}\left(\mathcal{U}_{M}+\mathcal{U}_{N}+\mathcal{U}_{N N}\right)
\end{gathered}
$$

Hadronic Field Transformation under chiral symmetry

$$
\Sigma \rightarrow L \Sigma R^{\dagger} \quad \xi \rightarrow L \xi U^{\dagger}=U \xi R^{\dagger} \quad N_{V} \rightarrow U N_{V}
$$

Projector Transformation under chiral symmetry

$$
\left(\xi^{\dagger} \mathcal{P}_{V(S)}^{L} \xi\right) \rightarrow U\left(\xi^{\dagger} \mathcal{P}_{V(S)}^{L} \xi\right) U^{\dagger} \quad\left(\xi \mathcal{P}_{V(S)}^{R} \xi^{\dagger}\right) \rightarrow U^{\dagger}\left(\xi \mathcal{P}_{V(S)}^{R} \xi^{\dagger}\right) U
$$

$\mathcal{U}_{M}=\operatorname{str}\left(T_{3} \Sigma T_{3} \Sigma^{\dagger}\right) \quad$ additive mass renormalization for mixed valence-sea mesons $\mathcal{U}_{N}=C_{M i x}^{N} \bar{N}_{V} N_{V} \quad$ additive mass renormalization for valence nucleons (baryons)
$\left.\mathcal{U}_{N N}=D_{2 b}^{\left({ }^{1} S_{0}\right)}\left(N_{V}^{T} P_{i}^{\left({ }^{1} S_{0}\right)} N_{V}\right)^{\dagger}\left(N_{V}^{T} P_{i}^{\left({ }^{1} S_{0}\right)} N_{V}\right)+D_{2 b}^{(3)} S_{1}\right)\left(N_{V}^{T} P_{i}^{\left({ }^{3} S_{1}\right)} N_{V}\right)^{\dagger}\left(N_{V}^{T} P_{i}^{\left(3 S_{1}\right)} N_{V}\right)$

Mixed Action Extrapolation Formulae from PQ ChPT

I. mesons and quark masses: $m_{u u} \rightarrow m_{\pi}$ where m_{π} is the pion mass measured directly from two-point correlator, the lattice-physical pion mass. Similarly, replace tree level meson (quark) masses with their corresponding latticephysical meson masses, $2 B_{0} m_{u} \rightarrow m_{\pi}^{2}-N L O$
2. decay constants: $f \rightarrow f_{\pi}\left(f_{K}\right)$ the lattice-physical decay constant
3. mixed mesons: $\quad m_{j u}^{2} \rightarrow \tilde{m}_{j u}^{2}=\frac{1}{2} m_{j j}^{2}+\frac{1}{2} m_{\pi}^{2}+b^{2} \Delta_{M i x}$ mixed meson masses receive additive lattice spacing dependent renormalization which can be measured directly form two-point correlation functions
4. sea-sea mesons: $m_{j r}^{2} \rightarrow \tilde{m}_{j r}^{2}=m_{j r}^{2}+b^{2} \Delta_{s e a}$ sea-sea mesons receive additive lattice spacing dependent mass renormalization
5. lattice spacing dependent counterterms: when appropriate, add lattice spacing dependent counterterms. This can largely be determined by enforcing the scale-independence of the given observable

Mixed Action Extrapolation Formulae from PQ ChPT

all meson quantities at one-loop are straightforward
most baryon observables are straightforward
twist-2 matrix elements: W. Detmold C.J.D. Lin PRD 71 (2005)
LHP Collaboration, J. Negele et. al.
PRL 96 (2006)
arXiv:0705.4295
C.Alexandrou, Th. Leontiou, J.W. Negele A.Tsapalis PRL 98 (2007)
C.Alexandrou,Th. Korzec, Th. Leontiou,

Nucleon, Delta, Nucleon to Delta form factors J.W. Negele,A.Tsapalis - this workshop

$I=2 \pi \pi$ scattering 2007 - precision results

Can address all sources of systematic error (except for staggered action)
O Mixed Action Extrapolation formula (including estimates of NNLO)
O Exponential Corrections to Lüscher's formula
O Residual chiral symmetry breaking from the domain-wall action
O Effective Range corrections

$I=2 \pi \pi$ scattering 2007-precision results

$I=2 \pi \pi$ scattering 2007 - precision results

For pion mass and decay constant, it is found that one-loop formulae get correct order of magnitude FV corrections, but two-loop formulae are needed for accurate corrections. G. Colangelo, S. Durr, C. Haefeli NPB 721 (2005)

$I=2 \pi \pi$ scattering 2007-precision results

$$
\begin{gathered}
I=1 K K \text { Scattering } \\
I=3 / 2 K \pi \text { Scattering } \\
f_{K} / f_{\pi}
\end{gathered}
$$

Applications: $I=1 K K$ Scattering

Mixed Action Computation

$$
\begin{aligned}
& m_{K} a_{K K}^{I=1}=-\frac{m_{K}^{2}}{8 \pi f_{K}^{2}}\left\{1+\frac{m_{K}^{2}}{\left(4 \pi f_{K}\right)^{2}}\left[C_{\pi} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)+C_{K} \ln \left(\frac{m_{K}^{2}}{\mu^{2}}\right)\right.\right. \\
&\left.\left.+C_{X} \ln \left(\frac{\tilde{m}_{X}^{2}}{\mu^{2}}\right)+C_{s s} \ln \left(\frac{m_{s s}^{2}}{\mu^{2}}\right)+C_{0}-32(4 \pi)^{2} L_{K K}^{I=1}\right]\right\}
\end{aligned}
$$

SU(3) Limit (not yet appeared in literature)

$$
\begin{aligned}
m_{K} a_{K K}^{I=1}=-\frac{m_{K}^{2}}{8 \pi f_{K}^{2}}\{1+ & \frac{m_{K}^{2}}{\left(4 \pi f_{K}\right)^{2}}\left[2 \ln \left(\frac{m_{K}^{2}}{\mu^{2}}\right)-\frac{2 m_{\pi}^{2}}{3\left(m_{\eta}^{2}-m_{\pi}^{2}\right)} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)\right. \\
& \left.\left.+\frac{2\left(20 m_{K}^{2}-11 m_{\pi}^{2}\right)}{27\left(m_{\eta}^{2}-m_{\pi}^{2}\right)} \ln \left(\frac{m_{\eta}^{2}}{\mu^{2}}\right)-\frac{14}{9}-32(4 \pi)^{2} L_{K K}^{I=1}(\mu)\right]\right\}
\end{aligned}
$$

Applications: $I=1 K K$ Scattering

Kaon Effective Mass Plots

Applications: $I=1 K K$ Scattering

Kaon Effective Scattering Length Plots

Applications: $I=1 K K$ Scattering

Quantity	$m_{l}=0.007$	$m_{l}=0.010$	$m_{l}=0.020$	$m_{l}=0.030$	$m_{l}=0.0062$
$b m_{\pi}$	$0.1846(4)(2)$	$0.2226(4)(3)$	$0.3104(3)(15)$	$0.3747(4)(8)$	$0.1453(5)(13)$
Fit Range	$8-14$	$9-13$	$9-15$	$6-13$	$17-39$
$b m_{K}$	$0.3680(4)(4)$	$0.3776(3)(4)$	$0.4046(3)(13)$	$0.4300(4)(3)$	$0.2458(5)(13)$
Fit Range	$7-11$	$9-15$	$9-15$	$9-13$	$20-34$
m_{π} / f_{K}	$1.712(4)(3)$	$2.069(3)(5)$	$2.835(3)(11)$	$3.335(4)(9)$	$1.978(15)(12)$
m_{K} / f_{K}	$3.412(5)(4)$	$3.509(3)(6)$	$3.695(3)(10)$	$3.827(4)(9)$	$3.344(19)(21)$
$\Delta E_{K K}($ l.u. $)$	$0.00619(30)(32)$	$0.00663(15)(35)$	$0.00606(14)(22)$	$0.00613(19)(10)$	$0.00437(36)(105)$
Fit Range	$12-17$	$10-16$	$11-17$	$12-17$	$18-34$
$m_{K^{+}} a_{K^{+} K^{+}}$	$-0.448(19)(20)$	$-0.497(10)(22)$	$-0.523(10)(23)$	$-0.590(15)(21)$	$-0.391(28)(82)$
$(b \neq 0)$					

Applications: $I=1 K K$ Scattering

Quantity	$m_{l}=0.007$	$m_{l}=0.010$	$m_{l}=0.020$	$m_{l}=0.030$	Quantity	$m_{l}=0.0062$
$\Delta_{M A}\left(m_{K} a_{K K}^{I=1}\right)$	-0.0067(14)	-0.0062(16)	-0.0052(19)	-0.0048(21)	$\Delta_{M A}\left(m_{K} a_{K K}^{I=1}\right)$	-0.0048(15)
$\Delta_{N N L O}\left(m_{K} a_{K K}^{I=1}\right)$	± 0.016	± 0.019	± 0.028	± 0.037	$\Delta_{N N L O}\left(m_{K} a_{K K}^{I=1}\right)$	± 0.013
$\Delta_{F V}\left(m_{K} a_{K K}^{I=1}\right)$	± 0.001	± 0.001	± 0.000	± 0.000	$\Delta_{F V}\left(m_{K} a_{K K}^{I=1}\right)$	± 0.001
$\Delta_{m_{\text {res }}}\left(m_{K} a_{K K}^{I=1}\right)$	± 0.007	± 0.006	± 0.005	± 0.004	$\Delta_{m_{\text {res }}}\left(m_{K} a_{K K}^{I=1}\right)$	± 0.004
$\Delta_{\text {range }}\left(m_{K} a_{K K}^{I=1}\right)$	± 0.008	± 0.008	± 0.008	± 0.007	$\Delta_{\text {range }}\left(m_{K} a_{K K}^{I=1}\right)$	± 0.004
$\begin{gathered} m_{K^{+}} a_{K^{+} K^{+}} \\ (b \rightarrow 0) \\ \hline \end{gathered}$	-0.441(19)(20)(19)	-0.491(10)(22)(22)	-0.518(10)(23)(30)	-0.585(15)(21)(38)	$\begin{gathered} m_{K^{+}} a_{K^{+} K^{+}} \\ \quad(b \rightarrow 0) \\ \hline \end{gathered}$	-0.387(28)(82)(14)
$32(4 \pi)^{2} L_{K K}^{I=1}\left(f_{K}\right)$	7.3(5)(8)	6.8(3)(8)	7.7(2)(8)	7.4(3)(8)	$32(4 \pi)^{2} L_{K K}^{I=1}\left(f_{K}\right)$	8.4(9)(2.6)

Applications: $K \pi$ Scattering

Kaon-pion system has new effect not seen in KK or $\pi \pi$ system - at one-loop the presence of valence-sea mesons.

$$
\begin{aligned}
\mu_{K \pi} a_{K \pi}^{I=3 / 2}= & -\frac{\mu_{K \pi}^{2}}{4 \pi f_{K} f_{\pi}}\left[1-\frac{32 m_{K} m_{\pi}}{f_{K} f_{\pi}} L_{\pi \pi}^{I=2}(\mu)+\frac{8\left(m_{K}-m_{\pi}\right)^{2}}{f_{K} f_{\pi}} L_{5}(\mu)\right] \\
& +\mu_{K \pi}\left[a_{v v}^{K \pi, 3 / 2}(\mu)+a_{v s}^{K \pi, 3 / 2}(\mu)\right]
\end{aligned}
$$

QCD limit, reduces to
B. Kubis U. Meissner Phys.Lett.B (2002)
$b^{2} \ln \left(\mu^{2}\right) \quad$ still cancels - Ginsparg-Wilson chiral valence symmetry protects amplitude from these corrections

O counter term structure of scattering length is identical to that in QCD. Mixed mesons introduce an additional unknown $\Delta_{M i x}$

O Measured NPLQCD PRD 74 (2006) K.Orginos,A.W-L
O Mixed Action Corrections smaller than $I=2 \pi \pi$ (in percentage diff)

Applications: f_{K} / f_{π}

$$
\frac{f_{K}}{f_{\pi}}=1+\frac{5 m_{\pi}^{2}}{4(4 \pi f)^{2}} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)-\frac{m_{K}^{2}}{2(4 \pi f)^{2}} \ln \left(\frac{m_{K}^{2}}{\mu^{2}}\right)-\frac{3 m_{\eta}^{2}}{4(4 \pi f)^{2}} \ln \left(\frac{m_{\eta}^{2}}{\mu^{2}}\right)+\frac{8\left(m_{K}^{2}-m_{\pi}^{2}\right)}{f^{2}} L_{5}(\mu)
$$

O Measured NPLQCD PRD 75(2007) - NPLQCD (hep-lat/0606023)

$$
\begin{aligned}
& \Delta\left(\frac{f_{K}}{f_{\pi}}\right)=\frac{\left.\frac{f_{K}}{f_{\pi}}\right|_{M A}-\left.\frac{f_{K}}{f_{\pi}}\right|_{Q C D}}{\left.\frac{f_{K}}{f_{\pi}}\right|_{Q C D}} \\
&\left.\frac{f_{K}}{f_{\pi}}\right|_{M A} \propto \frac{8\left(m_{K}^{2}-m_{\pi}^{2}\right)}{f_{K} f_{\pi}} L_{5}
\end{aligned}
$$

$$
-(600 \mathrm{MeV})^{2} \lesssim b^{2} \Delta_{M i x} \lesssim(800 \mathrm{MeV})^{2}
$$

$f_{K} / f_{\pi}=1.218 \pm 0.002{ }_{-0.024}^{+0.011}$

$$
\frac{f_{K}}{f_{\pi}}=1+\frac{5 m_{\pi}^{2}}{4(4 \pi f)^{2}} \ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)-\frac{m_{K}^{2}}{2(4 \pi f)^{2}} \ln \left(\frac{m_{K}^{2}}{\mu^{2}}\right)-\frac{3 m_{\eta}^{2}}{4(4 \pi f)^{2}} \ln \left(\frac{m_{\eta}^{2}}{\mu^{2}}\right)+\frac{8\left(m_{K}^{2}-m_{\pi}^{2}\right)}{f^{2}} L_{5}(\mu)
$$

○ Measured NPLQCD PRD 75(2007) - NPLQCD (hep-lat/0606023)

$$
\begin{aligned}
& \Delta\left(\frac{f_{K}}{f_{\pi}}\right)=\frac{\left.\frac{f_{K}}{f_{\pi}}\right|_{M A}-\left.\frac{f_{K}}{f_{\pi}}\right|_{Q C D}}{\left.\frac{f_{K}}{f_{\pi}}\right|_{Q C D}} \\
& \left.\frac{f_{K}}{f_{\pi}}\right|_{M A} \propto \frac{8\left(m_{K}^{2}-m_{\pi}^{2}\right)}{f_{K} f_{\pi}} L_{5}
\end{aligned}
$$

$$
-(600 \mathrm{MeV})^{2} \lesssim b^{2} \Delta_{M i x} \lesssim(800 \mathrm{MeV})^{2}
$$

This deviation is within the error band of PRD 75(2007) - NPLQCD

Applications: Counter Terms

$$
\begin{aligned}
& m_{\pi} a_{\pi \pi}^{I=2} \propto \frac{4 m_{\pi}^{4}}{\pi f_{\pi}^{4}} L_{\pi \pi}^{I=2} \quad m_{K} a_{K K}^{I=1} \propto \frac{4 m_{K}^{4}}{\pi f_{K}^{4}} L_{K K}^{I=1} \\
& \mu_{K \pi} a_{K \pi}^{I=3 / 2} \propto \frac{\mu_{K \pi}^{2}}{4 \pi f_{K} f_{\pi}}\left[\frac{32 m_{K} m_{\pi}}{f_{K} f_{\pi}} L_{\pi \pi}^{I=2}(\mu)-\frac{8\left(m_{K}-m_{\pi}\right)^{2}}{f_{K} f_{\pi}} L_{5}(\mu)\right] \\
& \frac{f_{K}}{f_{\pi}} \propto \frac{8\left(m_{K}^{2}-m_{\pi}^{2}\right)}{f_{\pi} f_{K}} L_{5} \quad \mu_{\pi K}=\frac{m_{\pi} m_{K}}{m_{\pi}+m_{K}} \\
& L_{\pi \pi}^{I=2}=2 L_{1}+2 L_{2}+L_{3}-2 L_{4}-L_{5}+2 L_{6}+L_{8} \\
& L_{K K}^{I=1}=L_{\pi \pi}^{I=2} \\
& L_{\pi \pi}^{I=2} \quad I=2 \pi \pi \quad \text { PRD } 73 \text { (2006) } \\
& \text { NPLQCD: } L_{5} \quad f_{K} / f_{\pi} \\
& \text { PRD } 75 \text { (2007) } \\
& L_{\pi \pi}^{I=2} \quad L_{5} \quad I=3 / 2 \pi K \quad \text { PRD } 74 \text { (2006) }
\end{aligned}
$$

Applications: Counter Terms

Applications: Two Meson Scattering

Nucleon-Nucleon PRL 97 (2006) Hyperon-Nucleon

hep-lat/06I2026

Applications: Nucleon-Nucleon and Hyperon-Nucleon Interactions

Applications: Nucleon-Nucleon and Hyperon-Nucleon Interactions

Applications: Nucleon-Nucleon and Hyperon-Nucleon Interactions

Applications: Nucleon-Nucleon and Hyperon-Nucleon Interactions

(a) (b) $V_{O P E}^{M A}(r)=\frac{1}{8 \pi f_{\pi}^{2}} \vec{\sigma}_{1} \cdot \vec{\nabla} \vec{\sigma}_{2} \cdot \vec{\nabla}\left[g_{A}^{2} \frac{\vec{\tau}_{1} \cdot \vec{\tau}_{2}}{r}-\left(g_{A}+g_{1}\right)^{2} \frac{\tilde{\Delta}_{j u}^{2}}{2 m_{\pi}}\right] e^{-m_{\pi} r}$ $\begin{aligned} \frac{1}{\left.a^{(1} S_{0}\right)}=\gamma & -\frac{M_{N}}{4 \pi}(\mu-\gamma)^{2} D_{2}^{\left({ }^{1} S_{0}\right)}(\mu) m_{\pi}^{2}+\frac{g_{A}^{2} M_{N}}{8 \pi f_{\pi}^{2}}\left[m_{\pi}^{2} \ln \left(\frac{\mu}{m_{\pi}}\right)+\left(m_{\pi}^{2}-\gamma\right)^{2}-(\mu-\gamma)^{2}\right] \\ & -\left(\Delta_{j u}^{2} D_{2 B}^{\left({ }^{(} S_{0}\right)}(\mu)+b^{2} D_{2 b}^{\left({ }^{1} S_{0}\right)}(\mu)\right) \frac{M_{N}}{4 \pi}(\mu-\gamma)^{2}+\tilde{\Delta}_{j u}^{2} \frac{g_{g_{0}^{2}}^{2} M_{N}}{8 \pi f_{\pi}^{2}}\left[\ln \left(\frac{\mu}{m_{\pi}}\right)+\frac{1}{2}-\frac{\gamma}{m_{\pi}}\right] \end{aligned}$ Beane and Savage PRD 67(2003) A similar analysis holds for Hyper-Nuclear interactions. Additionally, the lattice spacing dependent couterterms are flavor-blind, so all the baryon-baryon scattering processes share only 2 unphysical counterterms.

Applications: Numerical Results NPLQCD PRL 97 (2006)

$$
\begin{aligned}
& n p \\
& p p \\
& { }^{1} S_{0}-{ }^{3} D_{1} \\
& { }^{1} S_{0} \\
& \text { signal/noise } \sim \sqrt{N_{c f g}} e^{-\left(2 M_{N}-3 m_{\pi}\right) t}
\end{aligned}
$$

Applications: Nucleon-Nucleon

NPLQCD

${ }^{1} S_{0}$ of NN

$m_{\pi}(\mathrm{MeV})$	$a^{\left({ }^{1} S_{0}\right)}(\mathrm{fm})$
353.7 ± 2.1	$0.63 \pm 0.50 \pm 0.2$
492.5 ± 1.1	$0.65 \pm 0.18 \pm 0.2$
593.0 ± 1.6	$0.0 \pm 0.5 \pm 0.2$

S. Beane

Applications: Nucleon-Nucleon
 NPLQCD

$m_{\pi}(\mathrm{MeV})$	$a^{\left({ }^{3} S_{1}\right)}(\mathrm{fm})$
353.7 ± 2.1	$0.63 \pm 0.74 \pm 0.2$
492.5 ± 1.1	$0.41 \pm 0.28 \pm 0.2$
593.0 ± 1.6	$-0.2 \pm 1.3 \pm 0.2$

S. Beane

Applications: Hyperon-Nucleon

NPLQCD hep-lat/06|2026

Restless Pions:
 Orbifold boundary conditions and noise suppression in Lattice QCD

P.F. Bedaque, A.W-L
arXiv:0708.0207

Restless Pions Signal-to-Noise Problem

Consider a nucleon two-point correlation function
P. Lepage

1989 TASI Lectures

$$
\begin{aligned}
C(t) & =\langle q(t) q(t) q(t) \bar{q}(0) \bar{q}(0) \bar{q}(0)\rangle \\
& \xrightarrow{t \rightarrow \infty} A e^{-M t}
\end{aligned}
$$

But we estimate this correlation function with a Monte-Carlo technique

$$
\begin{aligned}
C(t) \simeq \bar{C}(t) & =\frac{1}{N} \sum_{U} S_{U}(t) S_{U}(t) S_{U}(t) \\
\sigma_{C}^{2}(t) & =\frac{1}{N} \sum_{U}\left|S_{U}(t) S_{U}(t) S_{U}(t)-\bar{C}(t)\right|^{2} \\
& =\left\langle S_{U}^{3}(t) S_{U}^{\dagger 3}(t)\right\rangle-|\bar{C}(t)|^{2} \\
\left\langle S_{U}^{3}(t) S_{U}^{\dagger 3}(t)\right\rangle & =\left\langle q^{3}(t) \bar{Q}^{3}(t) \bar{q}^{3}(0) Q^{3}(0)\right\rangle \\
& \xrightarrow{t \rightarrow \infty} B e^{-3 m_{\pi} t}
\end{aligned}
$$

Restless Pions Signal-to-Noise Problem

$$
\frac{\text { Sig. }}{\text { Noise }}=\frac{\bar{C}(t)}{\sqrt{\frac{1}{N} \sigma_{C}^{2}(t)}} \stackrel{t \rightarrow \infty}{\longrightarrow} A \sqrt{N} e^{-\left(M-3 / 2 m_{\pi}\right) t}
$$

Even worse for two-nucleon correlation functions

$$
\frac{\text { Sig. }}{\text { Noise }}=\frac{\bar{C}_{N N}(t)}{\sqrt{\frac{1}{N} \sigma_{C_{N N}}^{2}(t)}} \stackrel{t \rightarrow \infty}{\longrightarrow} A_{N N} \sqrt{N} e^{-\left(2 M-3 m_{\pi}\right) t}
$$

Taken from NPLQCD

$$
m_{\pi} \sim 350 \mathrm{MeV}
$$

Restless Pions parity-Orbifold condition

What if we could impose a boundary condition upon my quarks such that all pions were forbidden a zero momentum mode?

$$
\left\langle S_{U}^{3}(t) S_{U}^{\dagger 3}(t)\right\rangle=\left\langle q^{3}(t) \bar{Q}^{3}(t) \bar{q}^{3}(0) Q^{3}(0)\right\rangle
$$

Then signal-to-noise

$$
e^{-\left(M-3 / 2 E_{\pi}\right) t}
$$

$$
E_{\pi}=\sqrt{3\left(\frac{\pi}{L}\right)^{2}+m_{\pi}^{2}}
$$

$$
m_{\pi} \sim 350 \mathrm{MeV} \quad, \quad L \sim 2.5 \mathrm{fm}
$$

$$
E_{\pi} \sim 550 \mathrm{MeV}
$$

Restless Pions parity-Orbifold condition

$$
S_{1} / Z_{2}
$$

Imagine doubling the size of the lattice in z-direction

$$
\begin{aligned}
q(t, x, y,-z) & =\mathcal{P}_{z} q(t, x, y, z) \\
\bar{q}(t, x, y,-z) & =\bar{q}(t, x, y, z) \mathcal{P}_{z} \\
A_{\mu}(t, x, y,-z) & =(-)^{\delta_{\mu 3}} A_{\mu}(t, x, y, z)
\end{aligned}
$$

$\sim \pi(x)=\bar{q}(x) \gamma_{5} q(x)$

$$
\pi(t, x, y,-z)=-\pi(t, x, y, z)
$$

$$
\mathcal{P}_{z}=\gamma_{3} \gamma_{5}
$$

$$
\pi \pi(t, x, y, z)=\sum_{n=1}^{\infty} A_{-}^{(n)} \sin \left(\frac{n \pi z}{L}\right)
$$

Restless Pions!!! Boundary Conditions on "normal" lattice

Restless Pions T_{3} / Z_{2}

Can apply a similar parity orbifolding to make pions restless in all three spatial directions

This method does not work for the sea-quarks - lose Gamma-5 Hermiticity
Numerical implementation of this method is currently underway
P.F. Bedaque, M.I. Buchoff, R. Edwards, K. Orginos, A.W-L

For further details see arXiv:0708.0207

Conclusions

Two Meson scattering on the lattice is now in a precision age
Meson scattering lengths protected by chiral symmetry

\bigcirc
Fermion discretization methods which (approximately) respect chiral symmetry can be used in the valence sector
Very well understood from an effective field theory view point: extrapolations in terms of lattice-physical quantities renormalizes most of lattice artifacts (through one-loop)

Two-Nucleons are hard!!! but not inconceivablerelative to their rest mass, two-nucleon interaction energies are about an order of magnitude smaller than two-pion interaction energies with respect to their rest mass.additionally, signal to noise problem is severe - just as effective mass plateaus, noise begins to wash out signalRestless Pions boundary conditions may help with the signal to noise problem - under investigationimproved sources to couple to the deuteron better and clean up early time behavior?In addition to high statistics, clever ideas are in high demandTwo-Nucleons are hard but potential impact is great - especially in the hyperon sector where datum is extremely limited

