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Motivations



Motivations

Lattice QCD has entered the precision era - at least for Gold-Plated 
quantities

For two-pion (two-meson) interactions, lattice QCD is competitive with the 
best theoretical and phenomenological determinations of the non-scalar 
scattering channel
One would like to understand nuclear phenomenology from first principles - 
a direct connection with QCD is needed

A necessary first step is understanding the two-nucleon system
     can one find the deuteron?
     for what values of the quark masses does the deuteron remain 
         finely- tuned

In particular, lattice QCD has a great opportunity to make a large impact on 
understanding the interactions of strange hadrons

RHIC: STAR is beginning to use kaon interferometery

Neutron star properties: kaon-condensation?  phase-diagram?

Personally: scattering is just damn cool!



Two-Hadrons on the Lattice



Maiani-Testa No-Go-Theorem

S-Matrix elements can not be extracted away from 
threshold from infinite volume Euclidean correlation 
functions (        )n ≥ 3

C. Michael               NPB 327 (1989)

L. Maiani, M. Testa     PLB 245 (1990)

Easy to understand 

Minkowski space; S-matrix elements are complex 
functions above kinematic thresholds
Euclidean space; S-matrix elements are real functions 
for all kinematics - lost information??



Volume Dependence

K. Huang, C.N. Yang            Phys. Rev 105 (1957)

H.W. Hamber, E. Marinari,
G. Parisi, C. Rebbi               NPB 225 (1983)

M.                                     Comm. Math. Phys. 105 (1986)Lüscher
M.                                     NPB 354 (1991)Lüscher

S.R. Beane, P.F. Bedaque
A. Parreno, M.J. Savage        PLB 585 (2004)

• Luscher’s method for extracting infinite volume 
scattering parameters from the volume dependence of 
2-particle states



2-hadron states in Finite Volume

Luscher’s method for extracting infinite-volume scattering parameters 
essentially amounts to solving the eigenvalue equation,

k cot δ(k) =
1

πL

∑

!n

f(#n)

#n2
−

(

kL

2π

)2

For some regular function, 	     .  This equation can be expanded for large 
volume (compared to the scattering length, and	 	 	    ), and solved for the 
energy difference from threshold, 

f(!n)

∆E0 ! −
4πa0

mL
3

[

1 + c1

a0

L
+ c2

(

a0

L

)2

+ O

(

1

L
3

)]

f(!n) = 1

This method also works for large scattering lengths, as in the nucleon-nucleon 
system, where the box size is still larger than the range of the interaction

S.R. Beane, P.F. Bedaque
A. Parreno, M.J. Savage        PLB 585 (2004)

a! L , L >
1

mπ



I = 2 ππ scattering



I = 2 ππ scattering

Why not I = 0 ππ Scattering?

Numerically much more expensive - requires all-to-all 
propagators (disconnected diagrams)

For mixed-action schemes (or partially quenched) the 
unitarity violations are much more problematic, as the 
unphysical particles can go on shell in the s-channel 
diagrams, invalidating the use of                 method. Lüscher’s



I = 2 ππ scattering

p4 p2

p3 p1

p4

p3 p1

p2

2

( ) α

For I=2 pion scattering - the only particles which participate in the optical 
theorem are the        sπ

+

Luscher’s method relies upon unitarity (optical theorem)

This relation holds in a partially quenched - mixed action theories

To all orders in perturbative 
expansion!!

p4 p2

p3 p1

π
+

π
+

π
+

π
+

No hairpin diagrams (unitarity violating effects) in s-channel diagram for 
particles below 4-pi inelastic threshold.

J-W. Chen, D. O’Connell, R. S. Van De Water,  AW-L         
PRD 73(2006)



I = 2 ππ scattering

Sharpe, Gupta, Kilcup

Gupta, Patel, Sharpe

Quenched
NPB 383 (1992)

PRD 48 (1993)

Kuramashi, Fukujita, Mino, Okawa, Ukawa PRL 71 (1993)

hep-lat/9301016

PRL 73 (1994)

Gattringer, Hierl, Pullirsch hep-lat/0409064

hep-lat/9501024

Fiebig, Rabitsch, Markum, Mihaly hep-lat/9911025

Liu, Zhang, Chen, Ma hep-lat/0109010

NPB 624 (2002)

CP-PACS

JLQCD PRD 66 (2002)

PRD 67 (2003)

hep-lat/0503025

CLQCD hep-lat/0703015
PRD 71 (2005)

Dynamical
CP-PACS   2 flavors

PRD 70 (2004)

NPLQCD  2+1 flavors PRD 73 (2006)
arXiv:0706.3026



I = 2 ππ scattering

Coarse MILC (b ∼ 0.125 fm) Dimensions bml bms bmdwf
l bmdwf

s mπ (MeV) mK (MeV) Ncfg ×Nsource

2064f21b676m007m050 203 × 64 0.007 0.050 0.0081 0.081 290 580 468 × 16

2064f21b676m010m050 203 × 64 0.010 0.050 0.0138 0.081 350 595 658 × 20

2064f21b679m020m050 203 × 64 0.020 0.050 0.0313 0.081 490 640 486 × 24

2064f21b681m030m050 203 × 64 0.030 0.050 0.0478 0.081 590 675 564 × 8

Fine MILC (b ∼ 0.09 fm)

2896f2b709m0062m031 283 × 96 0.0062 0.031 0.0080 0.0423 320 538 506 × 1

1

Resources

Mixed Action (hybrid) calculation using domain-wall valence fermions and 
rooted staggered sea fermions with 2+1 dynamical fermion flavors 
- scheme developed by LHP Collaboration

L ∼ 2.5 fm



I = 2 ππ scattering

Coarse MILC (b ∼ 0.125 fm) Dimensions bml bms bmdwf
l bmdwf

s mπ (MeV) mK (MeV) Ncfg ×Nsource

2064f21b676m007m050 203 × 64 0.007 0.050 0.0081 0.081 290 580 468 × 16
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Fine MILC (b ∼ 0.09 fm)

2896f2b709m0062m031 283 × 96 0.0062 0.031 0.0080 0.0423 320 538 506 × 1

1

Resources

Mixed Action (hybrid) calculation using domain-wall valence fermions and 
rooted staggered sea fermions with 2+1 dynamical fermion flavors 
- scheme developed by LHP Collaboration

Peculiarities of staggered fermion formulation lead to 5 tastes of pions, with 
different masses. The mass splitting between these multiplets are lattice 
spacing artifacts, vanishing in the continuum limit.

One of these pions, the taste-5 pion, is the pseudo-Goldstone mode of a 
remnant axial symmetry, and thus is protected from additive lattice spacing 
dependent mass renormalizations.   Consequently, this taste-5 pion is the 
lightest, and the pion used to tune the domain-wall valence pion mass to 
(within a few percent).

L ∼ 2.5 fm



I = 2 ππ scattering 2005 - first dynamical 2+1 flavor
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I = 2 ππ scattering 2007 - precision results         arXiv:0706.3026
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I = 2 ππ scattering
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Can address all sources of systematic error (except for staggered action)

Mixed Action Extrapolation formula (including estimates of NNLO)

Exponential Corrections to                 formulaLüscher’s

Residual chiral symmetry breaking from the domain-wall action

Effective Range corrections

2007 - precision results         arXiv:0706.3026



I = 2 ππ scattering
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I = 2 ππ scattering

1 2 3 4
m
!
 / f

!

-0.5

-0.4

-0.3

-0.2

-0.1

0

m
!

 a
!+
!+

MA " - PT  (One Loop)
 " - PT  (Tree Level)
CP-PACS (2004)  (nf = 2)

E 865 (2003)
NPLQCD 

mπaI=2
ππ = −0.04330± 0.00042 NPLQCD (AW-L)

arXiv:0706.3026

Weinberg
1966
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2007 - precision results



I = 2 ππ scattering
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Mixed Action χPT

J-W. Chen, D. O’Connnell, R.S. Van de Water,  A.W-L
(hep-lat/0510024)

J-W. Chen, D. O’Connnell,  A.W-L

PRD 73(2006)

(hep-lat/0611003)
PRD 75(2007)

J-W. Chen, D. O’Connnell,  A.W-L arXiv:0706.0035

K.Orginos,  A.W-L arXiv:0705.0572



Mixed Actions (MA) and Partial Quenching (PQ)

π+ π+

×Tr
(

γ5 (D/val + mval)
−1

xy
γ5 (D/val + mval)

−1

yx

)

〈π†(y)π(x)〉 =
1

Z[0]

∫
DADet (D/

sea
+ msea) e−S[A]

Bar, Rupak, Shoresh
	 PRD 67 (2003)
	 PRD 70 (2004)

Bernard, Golterman  PRD 46 (1992)

Sharpe PRD 56 (1997)

Sharpe, Shoresh    PRD 62 (2000)
	 	 	 	 	 PRD 64 (2001)

D/sea −D/val = O(b)



Mixed Actions (MA) and Partial Quenching (PQ)

π+ π+

×Tr
(

γ5 (D/val + mval)
−1

xy
γ5 (D/val + mval)

−1

yx

)

〈π†(y)π(x)〉 =
1

Z[0]

∫
DADet (D/

sea
+ msea) e−S[A]

D/
sea

= D/
val

: Partially Quenched 
QCD

msea = mval : QCD

msea = ∞ : Quenched QCD

D/sea −D/val = O(b)

b→ 0



Why consider PQ or 
MA theories?

Mixed Actions (MA) and Partial Quenching (PQ)

mSea
mStrange

mValence
mStrange

1/4 1/2 1

1

Simulations
Lattice

QCD
PQ Chiral

Pert. Theory

Vale
nce

m    
    

  =
 m Sea

Phy
sic

al 
(U

nq
uen

che
d) 

Theo
rie

s

simulating light sea quarks 
numerically costly: valence 
quarks are cheaper

larger parameter space to match 
effective theory to: QCD limit of 
theory

chiral symmetry of Ginsparg-
Wilson quarks ideal: currently 
prohibitavely costly

provide means to test effective field theories (EFT): 
do PQ and MA EFTs completely encode all the unitarity violation 
which is manifest in the low energy dynamics?
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Mixed Action theories with Ginsparg-Wilson valence quarks

Ginsparg-Wilson fermions have a lattice-chiral symmetry

most lattice discretization schemes violate chiral symmetry

Wilson
clover Wilson
twisted mass (Wilson)
staggered

O(b)

O(b2)

}

domain-wall	 	 	 D.B. Kaplan	 	 	 Phys.Lett.B (1992)
	 	 	 	 	 	 Y. Shamir	 	 	 	 Nucl.Phys.B (1993)
	 	 	 	 	 	 V. Furman Y. Shamir	 Nucl.Phys.B (1995)
overlap		 	 	 	 R. Narayanan H. Neuberger
	 	 	 	 	 	 	 PRL (1993)  Nucl.Phys.B (1994,1995)

Ginsparg-Wilson fermions numerically expensive



MA EFT at Leading Order (LO)

Bar, Rupak, Shoresh
	 PRD 67 (2003)
	 PRD 70 (2004)

Bar, Bernard, Rupak, Shoresh
	 PRD 72 (2005)

Ginsparg-Wilson valence
Wilson sea

Ginsparg-Wilson valence
Staggered sea

Ginsparg-Wilson valence
anything sea

QCD

today



Symmetries of mixed action

Mixed Action Effective Field Theory

Valence Fermions: chiral symmetry, CPT, O(4)

Sea Fermions: chiral symmetry, CPT, O(4)

Ghost Fermions: chiral symmetry, CPT, O(4)

introduced to remove valence contributions from dynamical
quark-antiquark loops: mathematical “trick”



MA EFT at LO:  Meson Masses

L =
f2

8
str

(

∂µΣ ∂µΣ†
)

+
f2B

4
str

(

Σm†
Q + mQΣ†

)

LMA = b2 (UV S − Usea)

LO Lagrangian

form of mixed valence-sea potential is universal

UV S = CMix str
(
T3ΣT3Σ†) T3 = PS − PV

m2
vs = B0(mv + ms) + b2∆Mix

m2
ss = 2B0ms + b2∆sea

valence-valence

valence-sea

sea-sea

∆Mix =
16CMix

f2

m2
vv = 2B0mv



I = 2 ππ scattering

p3

p4 p2

p1

p4

p3 p1

p2

p4 p2

p3 p1

p2p4

p3 p1

p4

p1p3

p2

ZZ

Z Z

p4

p3 p1

p2

p4 p2

p1p3



I = 2 ππ scattering
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I = 2 ππ scattering

mπa2 = −m2
uu

8πf2

{
1 +

m2
uu

(4πf)2

[
4 ln

(
m2

uu

µ2

)
+ 4

m̃2
ju

m2
uu

ln

(
m̃2

ju

µ2

)
+ l′ππ(µ)

−

∆̃2
PQ

m2
uu

[

ln

(

m
2
uu

µ2

)]

−

∆̃4
PQ

6m4
uu

]

Adding mixed action and partial quenching effects

staggered sea

Wilson sea

+
∆̃2

PQ

(4πf)2
l′PQ(µ) +

b2

(4πf)2
l′b2(µ)

}

∆̃2
PQ = m2

jj + ∆sea(b)−m2
uu

∆̃2
PQ = m2

jj + b2∆I −m2
uu

∆̃2
PQ = m2

jj + bW0 −m2
uu

partial quenching 		 	 	 lattice discretization effects

Every sickness expected is apparent:
(b)(∆̃PQ)

m̃2
ju = B0(mu + mj) + b2∆Mix



I = 2 ππ scattering
lattice-physical parameters (mass and decay constant measured directly from 
correlators) the scattering length is given by

mπaI=2
ππ = − m2

π

8πf2
π

{
1 +

m2
π

(4πfπ)2

[
3 ln

(
m2

π

µ2

)
− 1− lI=2

ππ (µ)
]}



I = 2 ππ scattering
Adding mixed action and partial quenching effects,

The explicit dependence on the lattice spacing has exactly 
cancelled - up to a calculable effect from the hairpin 
interactions!!!

This is independent of the type of sea-quarks

mπaI=2
ππ = − m2

π

8πf2
π

{
1 +

m2
π

(4πfπ)2

[
3 ln

(
m2

π

µ2

)
− 1− lI=2

ππ (µ)
]

− m2
π

(4πfπ)2
∆̃4

PQ

6m4
π

}



MA EFT at next-to-leading order (NLO)

J-W. Chen, D. O’Connell,  AW-L     PRD 75(2007)



observed by

MA EFT at NLO:

length in SU(3) and SU(2):I = 2 ππ scattering

SU(3): chiral symmetry dictates that any strange-quark mass dependence 
at NLO must be of the form m2

πm2
K

mπaQCD
2

= −

m2
π

8πf2
π

{

1 +
m2

π

(4πfπ)2

[

3 ln

(

m2
π

µ2

)

− 1 + lππ(µ)

]}

SU(2):

there can not be any strange-quark mass dependence in 
the on-shell renormalized scattering length in SU(3)

M. Knecht, B. Moussallam, J. Stern, N.H. Fuchs
	 Nucl.Phys.B (1995)



MA EFT at NLO

Through the order we are working,
all problematic lattice-spacing artifacts can be absorbed as multiplicative 
renormalizations of the continuum low-energy constants, the chiral 
condensate, the pion decay constant and the Gasser-Leutwyler constants

Caution:  This does breakdown at the next order - we understand how

m4
π, b2m2

π, b4

δLGL = 4B0 L4 str
(
∂µΣPV ∂µΣ†PV

)
str(mq)+16B2

0 L6 str
(
mqΣ†PV + PV Σm†

q

)
str(mq).

δLMA = b2L∂
b2 str

(
∂µΣPV ∂µΣ†PV

)
str

(
PSf(Σ)PSf ′(Σ†)

)

+b2L
mq

b2 str
(
mqΣ†PV + PV Σm†

q

)
str

(
PS g(Σ)PS g′(Σ†)

)

Use of a lattice-physical (on-shell) renormalization scheme 
absorbs all sea-quark effects into the LO parameters,
and thus removes any explicit sea-quark dependence from 
meson scattering processes

f, B0

This holds for all mesonic quantities!!!



MA from PQ

J-W. Chen, D. O’Connell,  AW-L     arXiv:0706.0035



MA EFT at NLO: Symanzik Action

Mixed Action effects break Symmetry Between Valence and Sea Fermions

L(b2)
Mix = b2CV

Mix

(
Q̄γµPV Q

) (
Q̄γµPSQ

)
+ b2CA

Mix

(
Q̄γµγ5PV Q

) (
Q̄γµγ5PSQ

)

SU(Nv|Nv)L ⊗ SU(Nv|Nv)R ⊗ SU(Ns)L ⊗ SU(Ns)R

SU(Nv + Ns|Nv)L ⊗ SU(Nv + Ns|Nv)R −→︸︷︷︸
b !=0

Symanzik Lagrangian           contains terms which distinguish valence and sea 
fermions

O(b2)

PS + PV = 1
P2

S = PS

P2
V = PV

Sea projector

Valence projector



MA EFT at NLO: Hadronic Lagrangian: spurion analysis

L(b2)
Mix = b2CV

Mix

(
Q̄γµPV Q

) (
Q̄γµPSQ

)
+ b2CA

Mix

(
Q̄γµγ5PV Q

) (
Q̄γµγ5PSQ

)

L(b2)
Mix = b2 (UM + UN + UNN )

UM = str
(
T3ΣT3Σ†)

UN = CN
MixN̄V NV

UNN = D(1S0)
2b

(
NT

V P (1S0)
i NV

)†(
NT

V P (1S0)
i NV

)
+ D(3S1)

2b

(
NT

V P (3S1)
i NV

)†(
NT

V P (3S1)
i NV

)

PL
V (S) → LPL

V (S)L
† PR

V (S) → RPR
V (S)R

†

Σ→ LΣR† NV → UNVξ → LξU† = UξR†

(
ξ†PL

V (S)ξ
)
→ U

(
ξ†PL

V (S)ξ
)

U†
(
ξPR

V (S)ξ
†
)
→ U†

(
ξPR

V (S)ξ
†
)

U

Hadronic Field Transformation under chiral symmetry 

Projector Transformation under chiral symmetry

additive mass renormalization for mixed valence-sea mesons

additive mass renormalization for valence nucleons (baryons)



Mixed Action Extrapolation Formulae from PQ ChPT

2. decay constants:                      the lattice-physical decay constantf → fπ (fK)

3. mixed mesons:                                                               mixed meson 
masses receive additive lattice spacing dependent renormalization which can be 
measured directly form two-point correlation functions

m2
ju → m̃2

ju =
1
2
m2

jj +
1
2
m2

π + b2∆Mix

4. sea-sea mesons:                                              sea-sea mesons receive 
additive lattice spacing dependent mass renormalization

m2
jr → m̃2

jr = m2
jr + b2∆sea

5. lattice spacing dependent counterterms: when appropriate, add lattice spacing 
dependent counterterms.  This can largely be determined by enforcing the 
scale-independence of the given observable

1. mesons and quark masses:                    where       is the pion mass measured 
directly from two-point correlator, the lattice-physical pion mass.  Similarly, 
replace tree level meson (quark) masses with their corresponding lattice-
physical meson masses, 

muu → mπ mπ

2B0mu → m2
π −NLO

b2∆Mix = 0.0336(22)− 0.064(17)m2
π (l.u.)domain-wall / staggered

(291± 10 MeV)2

K.Orginos,  A.W-L arXiv:0705.0572



Mixed Action Extrapolation Formulae from PQ ChPT

all meson quantities at one-loop are straightforward

most baryon observables are straightforward

twist-2 matrix elements:       W. Detmold C.J.D. Lin   PRD 71 (2005)

LHP Collaboration, J. Negele et. al.

PRL 96 (2006)
arXiv:0705.4295

N → ∆ transitions

C. Alexandrou, Th. Korzec, Th. Leontiou, 
J.W. Negele, A. Tsapalis - this workshop

Nucleon, Delta,              
Nucleon to Delta form factors

C. Alexandrou, Th. Leontiou, J.W. Negele
A. Tsapalis               PRL 98 (2007)
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Can address all sources of systematic error (except for staggered action)

Mixed Action Extrapolation formula (including estimates of NNLO)

Exponential Corrections to                 formulaLüscher’s

Residual chiral symmetry breaking from the domain-wall action

Effective Range corrections
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TABLE II: The summary table of raw fit quantities required for the two-flavor analysis. The first
uncertainties are statistical, the second uncertainties are systematic uncertainties due to fitting
and the third uncertainty, when present, is a comprehensive systematic uncertainty, as discussed
in the text.

Quantity ml = 0.007 ml = 0.010 ml = 0.020 ml = 0.030
Fit Range 8 − 12 8 − 13 7 − 13 9 − 12
mπ (l.u.) 0.18454(58)(51) 0.22294(31)(09) 0.31132(28)(21) 0.37407(49)(12)
fπ (l.u.) 0.09273(29)(42) 0.09597(16)(10) 0.10179(12)(28) 0.10759(28)(17)
mπ/fπ 1.990(11)(14) 2.3230(57)(30) 3.0585(49)(95) 3.4758(98)(60)

Fit Range 11 − 15 9 − 15 10 − 15 12 − 17
∆Eππ (l.u.) 0.00779(47)(14) 0.00745(20)(07) 0.00678(18)(20) 0.00627(23)(10)

mπaI=2
ππ (b "= 0) −0.1458(78)(25)(14) −0.2061(49)(17)(20) −0.3540(68)(89)(35) −0.465(14)(06)(05)

lI=2
ππ (b "= 0) 6.1(1.9)(0.7)(0.4) 5.23(68)(24)(28) 6.53(32)(42)(16) 6.90(40)(18)(13)

δ (b "= 0)(degrees) −1.71(14)(04) −2.181(81)(28) −3.01(09)(12) −3.46(17)(07)
|p|/mπ 0.2032(60)(18) 0.1836(25)(09) 0.1480(17)(23) 0.1298(24)(10)

TABLE III: Summary table for fit quantities extrapolated to the continuum with two-flavor
MAχPT. The first row corresponds to the overall mixed action correction to the scattering length.
The uncertainties are discussed in detail in Section IV. The second and third rows are the con-
tinuum limit scattering length and low-energy constant. The first uncertainties are statistical and
the second uncertainties are comprehensive systematic uncertainties.

Quantity ml = 0.007 ml = 0.010 ml = 0.020 ml = 0.030
∆

(
mπaI=2

ππ

)
0.0033(02)(02)(32)(55) 0.0030(02)(04)(35)(22) 0.0023(01)(10)(36)(03) 0.0018(01)(16)(32)(01)

mπaI=2
ππ (b → 0) −0.1491(78)(32) −0.2091(49)(34) −0.356(07)(11) −0.467(14)(09)

lI=2
ππ (b → 0) 5.3(1.9)(1.8) 4.83(68)(73) 6.42(32)(51) 6.85(40)(27)

the non-zero momentum states [46]. There are additional lattice-spacing corrections due to
the hairpin interactions present in mixed-action theories, but for our scheme of domain-wall
valence propagators calculated in the background of the asqtad improved MILC gauge con-
figurations, these contributions are completely calculable without additional counterterms
at NLO, as they depend only upon valence meson masses and the staggered taste-identity
meson mass splitting [45, 46] which has been computed [15]. This allows us to precisely
determine the predicted mixed-action corrections for the scattering lengths at the various
pion masses used in this work. In two-flavor MAχ-PT (i.e. including finite lattice-spacing
corrections) the chiral expansion of the scattering length at NLO takes the form [46]

mπ aI=2
ππ (b "= 0) = − m2

π

8πf 2
π

{

1 +
m2

π

16π2f 2
π

[

3 log

(
m2

π

µ2

)

− 1 − lI=2
ππ (µ) −

∆̃4
ju

6m4
π

] }

, (16)

where it is understood that mπ and fπ are the lattice-physical parameters [46] and

∆̃2
ju ≡ m̃2

jj − m2
uu = 2B0(mj − mu) + b2∆I + . . . , (17)

where u denotes a valence quark and j denotes a sea-quark, and we are using isospin-
symmetric sea and valence quarks. m̃jj (muu) is the mass of a meson composed of two sea
(valence) quarks of mass mj (mu) and the dots denote higher-order corrections to the meson
masses. Clearly eq. (16), which contains all O(m2

πb2) and O(b4) lattice artifacts, reduces to

8
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TABLE VI: Results of the NLO fits in three-flavor Mixed-Action χ-PT. The values of mπ aI=2
ππ

correspond to the extrapolated values at the physical point. The first uncertainty is statistical and
the second is a comprehensive systematic uncertainty.

FIT 32(4π)LI=2
ππ (µ = fπ) mπ aI=2

ππ (extrapolated) χ2/dof
D 7.09 ± 0.23 ± 0.23 −0.042992 ± 0.000076 ± 0.000077 0.969
E 6.69 ± 0.29 ± 0.39 −0.04312 ± 0.00009 ± 0.00013 0.803
F 5.75 ± 0.63 ± 0.64 −0.04343 ± 0.00021 ± 0.00021 0.073

TABLE VII: Corrections and uncertainties in mπaI=2
ππ for nf = 2.

Quantity ml = 0.007 ml = 0.010 ml = 0.020 ml = 0.030
∆MA

(
mπaI=2

ππ

)
0.0033(02)(02) 0.0030(02)(04) 0.0023(01)(10) 0.0018(01)(16)

∆FV

(
mπaI=2

ππ

)
±0.0055 ±0.0022 ±0.0003 ±0.0001

∆mres

(
mπaI=2

ππ

)
±0.0032 ±0.0035 ±0.0036 ±0.0032

IV. SYSTEMATIC UNCERTAINTIES

This section describes the sources of systematic uncertainty that need to be quantified.

A. Higher-Order Effects in Mixed-Action χ-PT

We rely on the power counting associated with the chiral expansion of the Mixed-Action χPT
to estimate the size of the lattice-spacing artifacts arising at O(m4

πb2). To be conservative,
we have estimated these corrections to be of the general size

O(m4
πb2) ∼ 2πm4

π

(4πfπ)4

b2∆I

(4πfπ)2
. (24)

We treat these estimates as uncertainties in the predicted NLO MAχPT corrections which
can be determined from eq. (16) and eq. (19). We provide these predicted corrections and
their uncertainties in the form

∆MA

(
mπaI=2

ππ

)
= mπaI=2

ππ

∣∣∣
MA

− mπaI=2
ππ

∣∣∣
χPT

. (25)

The values of these corrections are shown in Tables VII and VIII. The first uncertainty
in these corrections is statistical and is associated with the meson masses, decay constants
and the taste-identity mass splitting, b2∆I. The second uncertainty is the power counting
estimate of the higher-order corrections of O(m4

πb2) as estimated in eq. (24). The calcula-
ble corrections to mπaI=2

ππ at O(m2
πb2, b4) are 2.3%, 1.5%, 0.65% and 0.39% effects for the

007, 010, 020 and 030 ensembles, respectively, from which we conclude that the O(m4
πb2)

contributions are significantly less than ∼ 1%.
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For pion mass and decay constant, it is found that one-loop formulae get 
correct order of magnitude FV corrections, but two-loop formulae are 
needed for accurate corrections.    G. Colangelo, S. Durr, C. Haefeli  NPB 721 (2005)
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TABLE VI: Results of the NLO fits in three-flavor Mixed-Action χ-PT. The values of mπ aI=2
ππ

correspond to the extrapolated values at the physical point. The first uncertainty is statistical and
the second is a comprehensive systematic uncertainty.

FIT 32(4π)LI=2
ππ (µ = fπ) mπ aI=2

ππ (extrapolated) χ2/dof
D 7.09 ± 0.23 ± 0.23 −0.042992 ± 0.000076 ± 0.000077 0.969
E 6.69 ± 0.29 ± 0.39 −0.04312 ± 0.00009 ± 0.00013 0.803
F 5.75 ± 0.63 ± 0.64 −0.04343 ± 0.00021 ± 0.00021 0.073

TABLE VII: Corrections and uncertainties in mπaI=2
ππ for nf = 2.

Quantity ml = 0.007 ml = 0.010 ml = 0.020 ml = 0.030
∆MA

(
mπaI=2

ππ

)
0.0033(02)(02) 0.0030(02)(04) 0.0023(01)(10) 0.0018(01)(16)

∆FV

(
mπaI=2

ππ

)
±0.0055 ±0.0022 ±0.0003 ±0.0001

∆mres

(
mπaI=2

ππ

)
±0.0032 ±0.0035 ±0.0036 ±0.0032

IV. SYSTEMATIC UNCERTAINTIES

This section describes the sources of systematic uncertainty that need to be quantified.

A. Higher-Order Effects in Mixed-Action χ-PT

We rely on the power counting associated with the chiral expansion of the Mixed-Action χPT
to estimate the size of the lattice-spacing artifacts arising at O(m4

πb2). To be conservative,
we have estimated these corrections to be of the general size

O(m4
πb2) ∼ 2πm4

π

(4πfπ)4

b2∆I

(4πfπ)2
. (24)

We treat these estimates as uncertainties in the predicted NLO MAχPT corrections which
can be determined from eq. (16) and eq. (19). We provide these predicted corrections and
their uncertainties in the form

∆MA

(
mπaI=2

ππ

)
= mπaI=2

ππ

∣∣∣
MA

− mπaI=2
ππ

∣∣∣
χPT

. (25)

The values of these corrections are shown in Tables VII and VIII. The first uncertainty
in these corrections is statistical and is associated with the meson masses, decay constants
and the taste-identity mass splitting, b2∆I. The second uncertainty is the power counting
estimate of the higher-order corrections of O(m4

πb2) as estimated in eq. (24). The calcula-
ble corrections to mπaI=2

ππ at O(m2
πb2, b4) are 2.3%, 1.5%, 0.65% and 0.39% effects for the

007, 010, 020 and 030 ensembles, respectively, from which we conclude that the O(m4
πb2)

contributions are significantly less than ∼ 1%.

12

TABLE II: The summary table of raw fit quantities required for the two-flavor analysis. The first
uncertainties are statistical, the second uncertainties are systematic uncertainties due to fitting
and the third uncertainty, when present, is a comprehensive systematic uncertainty, as discussed
in the text.

Quantity ml = 0.007 ml = 0.010 ml = 0.020 ml = 0.030
Fit Range 8 − 12 8 − 13 7 − 13 9 − 12
mπ (l.u.) 0.18454(58)(51) 0.22294(31)(09) 0.31132(28)(21) 0.37407(49)(12)
fπ (l.u.) 0.09273(29)(42) 0.09597(16)(10) 0.10179(12)(28) 0.10759(28)(17)
mπ/fπ 1.990(11)(14) 2.3230(57)(30) 3.0585(49)(95) 3.4758(98)(60)

Fit Range 11 − 15 9 − 15 10 − 15 12 − 17
∆Eππ (l.u.) 0.00779(47)(14) 0.00745(20)(07) 0.00678(18)(20) 0.00627(23)(10)

mπaI=2
ππ (b "= 0) −0.1458(78)(25)(14) −0.2061(49)(17)(20) −0.3540(68)(89)(35) −0.465(14)(06)(05)

lI=2
ππ (b "= 0) 6.1(1.9)(0.7)(0.4) 5.23(68)(24)(28) 6.53(32)(42)(16) 6.90(40)(18)(13)

δ (b "= 0)(degrees) −1.71(14)(04) −2.181(81)(28) −3.01(09)(12) −3.46(17)(07)
|p|/mπ 0.2032(60)(18) 0.1836(25)(09) 0.1480(17)(23) 0.1298(24)(10)

TABLE III: Summary table for fit quantities extrapolated to the continuum with two-flavor
MAχPT. The first row corresponds to the overall mixed action correction to the scattering length.
The uncertainties are discussed in detail in Section IV. The second and third rows are the con-
tinuum limit scattering length and low-energy constant. The first uncertainties are statistical and
the second uncertainties are comprehensive systematic uncertainties.

Quantity ml = 0.007 ml = 0.010 ml = 0.020 ml = 0.030
∆

(
mπaI=2

ππ

)
0.0033(02)(02)(32)(55) 0.0030(02)(04)(35)(22) 0.0023(01)(10)(36)(03) 0.0018(01)(16)(32)(01)

mπaI=2
ππ (b → 0) −0.1491(78)(32) −0.2091(49)(34) −0.356(07)(11) −0.467(14)(09)

lI=2
ππ (b → 0) 5.3(1.9)(1.8) 4.83(68)(73) 6.42(32)(51) 6.85(40)(27)

the non-zero momentum states [46]. There are additional lattice-spacing corrections due to
the hairpin interactions present in mixed-action theories, but for our scheme of domain-wall
valence propagators calculated in the background of the asqtad improved MILC gauge con-
figurations, these contributions are completely calculable without additional counterterms
at NLO, as they depend only upon valence meson masses and the staggered taste-identity
meson mass splitting [45, 46] which has been computed [15]. This allows us to precisely
determine the predicted mixed-action corrections for the scattering lengths at the various
pion masses used in this work. In two-flavor MAχ-PT (i.e. including finite lattice-spacing
corrections) the chiral expansion of the scattering length at NLO takes the form [46]

mπ aI=2
ππ (b "= 0) = − m2

π

8πf 2
π

{

1 +
m2

π

16π2f 2
π

[

3 log

(
m2

π

µ2

)

− 1 − lI=2
ππ (µ) −

∆̃4
ju

6m4
π

] }

, (16)

where it is understood that mπ and fπ are the lattice-physical parameters [46] and

∆̃2
ju ≡ m̃2

jj − m2
uu = 2B0(mj − mu) + b2∆I + . . . , (17)

where u denotes a valence quark and j denotes a sea-quark, and we are using isospin-
symmetric sea and valence quarks. m̃jj (muu) is the mass of a meson composed of two sea
(valence) quarks of mass mj (mu) and the dots denote higher-order corrections to the meson
masses. Clearly eq. (16), which contains all O(m2

πb2) and O(b4) lattice artifacts, reduces to

8
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Applications: I = 1 KK Scattering

mKaI=1
KK = − m2

K

8πf2
K

{
1 +

m2
K

(4πfK)2

[
Cπ ln

(
m2

π

µ2

)
+ CK ln

(
m2

K

µ2

)

+CX ln
(

m̃2
X

µ2

)
+ Css ln

(
m2

ss

µ2

)
+ C0 − 32(4π)2 LI=1

KK

]}

mKaI=1
KK = − m2

K

8πf2
K

{
1 +

m2
K

(4πfK)2

[
2 ln

(
m2

K

µ2

)
− 2m2

π

3(m2
η −m2

π)
ln

(
m2

π

µ2

)

+
2(20m2

K − 11m2
π)

27(m2
η −m2

π)
ln

(
m2

η

µ2

)
− 14

9
− 32(4π)2 LI=1

KK(µ)
]}

Mixed Action Computation

SU(3) Limit (not yet appeared in literature)

PRD 75(2007)



Applications: I = 1 KK Scattering
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Applications: I = 1 KK Scattering

Kaon Effective Scattering Length Plots

7 8 9 10 11 12 13 14 15 16 17 18 19
t (l.u.)

-0.6

-0.5

-0.4

-0.3

( m
!

 a !
!

 ) EF
F bml = 0.007

8 9 10 11 12 13 14 15 16 17 18 19
t (l.u.)

-0.6

-0.5

-0.4

-0.3

( m
!

 a !
!

 ) EF
F bml = 0.010

8 9 10 11 12 13 14 15 16 17 18 19
t (l.u.)

-0.6

-0.5

-0.4

( m
!

 a !
!

 ) EF
F bml = 0.020

8 9 10 11 12 13 14 15 16 17 18 19
t (l.u.)

-0.7

-0.6

-0.5

( m
!

 a !
!

 ) EF
F bml = 0.030

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
t (l.u.)

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0

( m
!

 a !
!

 ) EF
F

bml = 0.0062

arXiv:0709.1169



Applications: I = 1 KK Scattering
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TABLE II: Masses, energies and scattering lengths determined from the lattice calculation. The

first uncertainty assigned to each quantity is statistical, determined with the Jackknife procedure,
and the second uncertainty is an estimated fitting systematic.

Quantity ml = 0.007 ml = 0.010 ml = 0.020 ml = 0.030 ml = 0.0062

b mπ 0.1846(4)(2) 0.2226(4)(3) 0.3104(3)(15) 0.3747(4)(8) 0.1453(5)(13)

Fit Range 8–14 9–13 9–15 6–13 17–39

b mK 0.3680(4)(4) 0.3776(3)(4) 0.4046(3)(13) 0.4300(4)(3) 0.2458(5)(13)

Fit Range 7–11 9–15 9–15 9–13 20–34

mπ/fK 1.712(4)(3) 2.069(3)(5) 2.835(3)(11) 3.335(4)(9) 1.978(15)(12)

mK/fK 3.412(5)(4) 3.509(3)(6) 3.695(3)(10) 3.827(4)(9) 3.344(19)(21)

∆EKK(l.u.) 0.00619(30)(32) 0.00663(15)(35) 0.00606(14)(22) 0.00613(19)(10) 0.00437(36)(105)

Fit Range 12–17 10–16 11–17 12–17 18–34

mK+aK+K+ -0.448(19)(20) -0.497(10)(22) -0.523(10)(23) -0.590(15)(21) -0.391(28)(82)

(b != 0)

which runs over all triplets of integers j such that |j| < Λ and the limit Λ → ∞ is implicit.
The scattering parameters are then related to p cot δ(p) through the effective-range expansion

p cot δ(p) =
1

a
+

1

2
rp2 + O(p4) , (9)

where a is the scattering length and r is the effective range. For naturally-sized scattering
lengths and small interaction momenta, p cot δ(p) is predominantly given by the inverse
scattering length.

III. ANALYSIS AND THE CHIRAL AND CONTINUUM EXTRAPOLATIONS

It is convenient to present the results of our calculation with “effective scattering length”
plots, determined from the ratio of correlation functions,

∆EK+K+(t) = log

(

GK+K+(0, t)

GK+K+(0, t + 1)

)

, (10)

and similarly on the fine ensemble. For each time slice, ∆E(t) is inserted into eq. (7)
which yields a scattering length at each time slice, aK+K+(t). To remove any scale-setting
ambiguities, the scattering length is multiplied by the “effective” kaon mass, mK(t). The
effective scattering length plots associated with each lattice ensemble are shown in Fig. 2.
The statistical errors are determined from a Jackknife analysis, while the quoted systematic
errors are estimated from both the range of fits as well as the two methods of determining
the interaction energy described in Sec. II. In Table II the calculated values of the meson
masses, decay constants, two-particle energy shifts and scattering lengths are presented.
Effective kaon mass plots and effective scattering length plots are shown in Fig. 1 and
Fig. 2, respectively.
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TABLE III: The continuum limit of the scattering length at the physical point on the coarse MILC

lattices, the extracted counterterm that enters at NLO in χ-PT, and the various systematic un-
certainties that have been identified beyond those associated with fitting. The correction factors,
∆i, are defined in the text. The first uncertainty associated with each scattering length is statis-

tical, the second is the systematic uncertainty from Table II and the third is from the systematic
uncertainties presented in this table (combined in quadrature). The first uncertainty associated
with each LI=1

KK(µ = fK) is statistical, while the second is systematic (all systematics combined in

quadrature).

Quantity ml = 0.007 ml = 0.010 ml = 0.020 ml = 0.030

∆MA

(

mKaI=1
KK

)

-0.0067(14) -0.0062(16) -0.0052(19) -0.0048(21)

∆NNLO

(

mKaI=1
KK

)

±0.016 ±0.019 ±0.028 ±0.037

∆FV

(

mKaI=1
KK

)

±0.001 ±0.001 ±0.000 ±0.000

∆mres

(

mKaI=1
KK

)

±0.007 ±0.006 ±0.005 ±0.004

∆range

(

mKaI=1
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)

± 0.008 ±0.008 ±0.008 ±0.007

mK+aK+K+ -0.441(19)(20)(19) -0.491(10)(22)(22) -0.518(10)(23)(30) -0.585(15)(21)(38)

(b → 0)

32(4π)2LI=1
KK(fK) 7.3(5)(8) 6.8(3)(8) 7.7(2)(8) 7.4(3)(8)

TABLE IV: The continuum limit of the scattering length at the physical point on the fine MILC
lattices, the extracted counterterm that enters at NLO in χ-PT, and the various systematic uncer-

tainties that have been identified beyond those associated with fitting. The correction factors and
uncertainties are discussed in the caption of Table III.
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)
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(b → 0)

32(4π)2LI=1
KK(fK) 8.4(9)(2.6)

scattering length, ∆range(mKaI=1
KK). These various sources of systematic uncertainty, as well

as the predicted mixed-action corrections, the adjusted scattering lengths and the deter-
mined values of LI=1

KK(µ) are given in Table III and Table IV. In the following sections, each
source of systematic uncertainty is addressed in turn.

1. NNLO χ-PT Corrections

The NNLO extrapolation formula for mKaI=1
KK does not exist, and therefore estimates of

contributions from higher order in the chiral expansion are limited to power-counting argu-

10

TABLE III: The continuum limit of the scattering length at the physical point on the coarse MILC

lattices, the extracted counterterm that enters at NLO in χ-PT, and the various systematic un-
certainties that have been identified beyond those associated with fitting. The correction factors,
∆i, are defined in the text. The first uncertainty associated with each scattering length is statis-

tical, the second is the systematic uncertainty from Table II and the third is from the systematic
uncertainties presented in this table (combined in quadrature). The first uncertainty associated
with each LI=1

KK(µ = fK) is statistical, while the second is systematic (all systematics combined in

quadrature).

Quantity ml = 0.007 ml = 0.010 ml = 0.020 ml = 0.030

∆MA

(

mKaI=1
KK

)

-0.0067(14) -0.0062(16) -0.0052(19) -0.0048(21)

∆NNLO

(

mKaI=1
KK

)

±0.016 ±0.019 ±0.028 ±0.037

∆FV

(

mKaI=1
KK

)

±0.001 ±0.001 ±0.000 ±0.000

∆mres

(

mKaI=1
KK

)

±0.007 ±0.006 ±0.005 ±0.004

∆range

(

mKaI=1
KK

)

± 0.008 ±0.008 ±0.008 ±0.007

mK+aK+K+ -0.441(19)(20)(19) -0.491(10)(22)(22) -0.518(10)(23)(30) -0.585(15)(21)(38)

(b → 0)

32(4π)2LI=1
KK(fK) 7.3(5)(8) 6.8(3)(8) 7.7(2)(8) 7.4(3)(8)

TABLE IV: The continuum limit of the scattering length at the physical point on the fine MILC
lattices, the extracted counterterm that enters at NLO in χ-PT, and the various systematic uncer-

tainties that have been identified beyond those associated with fitting. The correction factors and
uncertainties are discussed in the caption of Table III.

Quantity ml = 0.0062

∆MA

(

mKaI=1
KK

)

-0.0048(15)

∆NNLO

(

mKaI=1
KK

)

±0.013

∆FV

(

mKaI=1
KK

)

±0.001

∆mres

(

mKaI=1
KK

)

±0.004

∆range

(

mKaI=1
KK

)

±0.004

mK+aK+K+ -0.387(28)(82)(14)

(b → 0)

32(4π)2LI=1
KK(fK) 8.4(9)(2.6)

scattering length, ∆range(mKaI=1
KK). These various sources of systematic uncertainty, as well

as the predicted mixed-action corrections, the adjusted scattering lengths and the deter-
mined values of LI=1

KK(µ) are given in Table III and Table IV. In the following sections, each
source of systematic uncertainty is addressed in turn.

1. NNLO χ-PT Corrections

The NNLO extrapolation formula for mKaI=1
KK does not exist, and therefore estimates of

contributions from higher order in the chiral expansion are limited to power-counting argu-

10

3 3.5 4
mK+ / fK+

-0.6

-0.5

-0.4

-0.3

m
K

+
 a

K
+

K
+

!-PT  (Tree Level)
MILC coarse (b  /= 0)
MILC fine  (b  /= 0)
physical point
extrapolated with  MA!-PT

3 3.2 3.4 3.6 3.8 4

mK / fK

-0.05

-0.025

0

0.025

0.05

0.075

0.1

(m
K

  a K
+

K
+

)  
-  

(T
re

e 
Le

ve
l !

-P
T)

 lattice data:  coarse-MILC + fine-MILC
extrapolation:  MA!-PT



Applications: K    Scatteringπ

Kaon-pion system has new effect not seen in KK or 
system - at one-loop the presence of valence-sea mesons.

ππ

still cancels - Ginsparg-Wilson chiral valence symmetry 
protects amplitude from these corrections

counter term structure of scattering length is identical to that in 
QCD.  Mixed mesons introduce an additional unknown ∆Mix

Measured NPLQCD    PRD 74 (2006)

µKπaI=3/2
Kπ = − µ2

Kπ

4πfKfπ

[
1− 32mKmπ

fKfπ
LI=2

ππ (µ) +
8(mK −mπ)2

fKfπ
L5(µ)

]

b2 ln(µ2)

B. Kubis U. Meissner	 Phys.Lett.B (2002)
QCD limit, reduces to

+µKπ

[
aKπ,3/2

vv (µ) + aKπ,3/2
vs (µ)

]

PRD 75(2007)

Mixed Action Corrections smaller than                 (in percentage diff) I = 2 ππ

K.Orginos, A.W-L



Applications:

∆
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−
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Measured NPLQCD    PRD 75(2007) - NPLQCD (hep-lat/0606023)



Applications:
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Applications: Counter Terms

fK

fπ
∝ 8(m2

K −m2
π)

fπfK
L5

NPLQCD:

LI=2
ππ

LI=1
KK = LI=2

ππ

LI=2
ππ = 2L1 + 2L2 + L3 − 2L4 − L5 + 2L6 + L8

µπK =
mπmK

mπ + mK

L5

mπ aI=2
ππ ∝ 4m4

π

π f4
π

LI=2
ππ mK aI=1

KK ∝ 4m4
K

π f4
K

LI=1
KK

PRD 73 (2006)I = 2 ππ

fK/fπ

I = 3/2 πK

PRD 75 (2007)

PRD 74 (2006)

µKπaI=3/2
Kπ ∝ µ2

Kπ

4πfKfπ

[
32mKmπ

fKfπ
LI=2

ππ (µ)− 8(mK −mπ)2

fKfπ
L5(µ)

]

LI=2
ππ L5



Applications: Counter Terms
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Applications: Two Meson Scattering
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Nucleon-Nucleon

Hyperon-Nucleon
PRL 97 (2006)

hep-lat/0612026



Applications: Nucleon-Nucleon and Hyperon-Nucleon Interactions

(a) (b)

Beane and Savage  PLB 535(2002)
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]
e−mπr



Applications: Nucleon-Nucleon and Hyperon-Nucleon Interactions
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Beane and Savage  PLB 535(2002)
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Applications: Nucleon-Nucleon and Hyperon-Nucleon Interactions

(a) (b)

Beane and Savage  PLB 535(2002)
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Applications: Nucleon-Nucleon and Hyperon-Nucleon Interactions

(a) (b)

1
a(1S0)

= γ − MN

4π
(µ− γ)2 D(1S0)

2 (µ) m2
π +

g2
AMN

8πf2
π

[
m2

π ln
(

µ

mπ

)
+ (m2

π − γ)2 − (µ− γ)2
]

−
(
∆2

juD(1S0)
2B (µ) + b2D(1S0)

2b (µ)
) MN

4π
(µ− γ)2 + ∆̃2

ju
g2
0MN

8πf2
π

[
ln

(
µ

mπ

)
+

1
2
− γ

mπ

]

A similar analysis holds for Hyper-Nuclear interactions.  Additionally, the lattice 
spacing dependent couterterms are flavor-blind, so all the baryon-baryon 
scattering processes share only 2 unphysical counterterms.

Beane and Savage  PRD 67(2003)

V MA
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A
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r
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2mπ

]
e−mπr



Applications: Numerical Results
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Applications:

1S0

mπ (MeV ) a(1S0) (fm)

353.7 ± 2.1 0.63 ± 0.50 ± 0.2

492.5 ± 1.1 0.65 ± 0.18 ± 0.2

593.0 ± 1.6 0.0 ± 0.5 ± 0.2

JLab 6/07 – p.21/27

S. Beane

Nucleon-Nucleon NPLQCD



Applications: Nucleon-Nucleon

S. Beane

3S1

mπ (MeV ) a(3S1) (fm)

353.7 ± 2.1 0.63 ± 0.74 ± 0.2

492.5 ± 1.1 0.41 ± 0.28 ± 0.2

593.0 ± 1.6 −0.2 ± 1.3 ± 0.2

JLab 6/07 – p.22/27

NPLQCD



Applications: NPLQCDHyperon-Nucleon
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Restless Pions: 
Orbifold boundary conditions and 
noise suppression in Lattice QCD

P.F. Bedaque,  A.W-L          arXiv:0708.0207



Restless Pions Signal-to-Noise Problem

Consider a nucleon two-point correlation function

C(t) = 〈q(t)q(t)q(t)q̄(0)q̄(0)q̄(0)〉
t→∞−→ Ae−Mt

But we estimate this correlation function with a Monte-Carlo technique

C(t) ! C̄(t) =
1
N

∑

U

SU (t)SU (t)SU (t)

σ2
C(t) =

1
N

∑

U

|SU (t)SU (t)SU (t)− C̄(t)|2

= 〈S3
U (t)S† 3

U (t)〉 − |C̄(t)|2

P. Lepage
1989 TASI Lectures

〈S3
U (t)S† 3

U (t)〉 = 〈q3(t)Q̄3(t)q̄3(0)Q3(0)〉
t→∞−→ Be−3mπt



Restless Pions Signal-to-Noise Problem

Sig.

Noise
=

C̄(t)√
1
N σ2

C(t)

t→∞−→ A
√

Ne−(M−3/2mπ)t

Even worse for two-nucleon correlation functions

Sig.

Noise
=

C̄NN (t)√
1
N σ2

CNN
(t)

t→∞−→ ANN

√
Ne−(2M−3mπ)t

Taken from NPLQCD

mπ ∼ 350 MeV



Restless Pions

What if we could impose a boundary condition upon my quarks such that all 
pions were forbidden a zero momentum mode?

parity-Orbifold condition

〈S3
U (t)S† 3

U (t)〉 = 〈q3(t)Q̄3(t)q̄3(0)Q3(0)〉

Then signal-to-noise e−(M−3/2Eπ)t

Eπ =
√

3
(π

L

)2
+ m2

π

mπ ∼ 350 MeV , L ∼ 2.5 fm

Eπ ∼ 550 MeV



Restless Pions parity-Orbifold condition

z ! 0

z

"z

z ! L
z ! "L

z ! 0 z ! L

S1/Z2

Imagine doubling the size of the lattice in z-direction

q(t, x, y,−z) = Pz q(t, x, y, z)
q̄(t, x, y,−z) = q̄(t, x, y, z)Pz

Aµ(t, x, y,−z) = (−)δµ3Aµ(t, x, y, z)

π(x) = q̄(x)γ5q(x)

π(t, x, y,−z) = −π(t, x, y, z)

Pz = γ3γ5

π(t, x, y, z) =
∞∑

n=1

A(n)
− sin

(nπz

L

)

Restless Pions!!! Boundary Conditions on “normal” lattice



Restless Pions T3/Z2

Can apply a similar parity orbifolding to make pions restless in all three spatial 
directions

This method does not work for the sea-quarks - lose Gamma-5 Hermiticity

Numerical implementation of this method is currently underway

P.F. Bedaque, M.I. Buchoff, 
R. Edwards, K. Orginos, A.W-L

For further details
see arXiv:0708.0207



Conclusions
Two Meson scattering on the lattice is now in a precision age

Meson scattering lengths protected by chiral symmetry

Fermion discretization methods which (approximately) respect chiral symmetry can be 
used in the valence sector

Very well understood from an effective field theory view point: extrapolations in terms of 
lattice-physical quantities renormalizes most of lattice artifacts (through one-loop)

Two-Nucleons are hard!!! but not inconceivable

relative to their rest mass, two-nucleon interaction energies are about an order of 
magnitude smaller than two-pion interaction energies with respect to their rest mass.

additionally, signal to noise problem is severe - just as effective mass plateaus, noise begins 
to wash out signal

Restless Pions boundary conditions may help with the signal to noise problem - under 
investigation

improved sources to couple to the deuteron better and clean up early time behavior?

Two-Nucleons are hard but potential impact is great - especially in the 
hyperon sector where datum is extremely limited

In addition to high statistics, clever ideas are in high demand


