Hadron Structure from Lattice QCD

J.W. Negele

Hadronic Physics on the Lattice Workshop Electromagnetic Interactions with Nucleons and Nuclei

Milos

September 10, 2007

Collaborators

MIT

B. Bistrovic J. Bratt D. Dolgov O. Jahn H. Meyer A. Pochinsky D. Sigaev S. Syritsyn JLab R. Edwards H-W Lin D. Richards William & Mary, JLab K. Orginos Arizona D. Renner New Mexico M. Engelhardt Yale G. Fleming

T. U. Munchen Ph. Haegler B. Musch

DESY Zeuthen W. Schroers

U Cyprus C.Alexandrou G. Koutsou Ph. Leontiou

Athens A.Tsapalis ETH, CERN Ph. de Forcrand Julich Th. Lippert Wuppertal K. Schilling

Outline

Introduction

Understanding quark structure of hadrons from QCD

Deep inelastic scattering

Moments of quark distributions

Form factors

Generalized form factors

Transverse structure

Origin of nucleon spin

Understanding gluon structure of hadrons

□ Gluon contribution to the pion mass and momentum

- Insight into how QCD works
- Summary and future challenges

How do hadrons arise from QCD?

Lagrangian constrained by Lorentz invariance, gauge invariance and renormalizability:

$${\cal L}=ar{\psi}(i\gamma^\mu D_\mu-m)\psi-rac{1}{4}F^2_{\mu
u}$$

$$D_\mu = \partial_\mu - ig A_\mu \qquad F_{\mu
u} = rac{i}{g} [D_\mu, D_
u]$$

Deceptively simple Lagrangian produces amazingly rich and complex structure of strongly interacting matter in our universe

Goals

- Quantitative calculation of hadron observables from first principles
 - Agreement with experiment
 - Credibility for predictions and guiding experiment
- Insight into how QCD works
 - Mechanisms
 - Paths that dominate action instantons
 - Variational wave functions
 - Diquark correlations
 - Dependence on parameters

 \square N_c, N_f, gauge group, m_a

Computational Issues

Fermion determinant - Full QCD

- Small lattice spacing
- Small quark mass
- □ Large lattice volume $\frac{1}{m_{\pi}} \leq \frac{L}{4}$ L(fm) m_π (Mev) 1.6 500 4.0 200 5.7 140

□ Cost ~ $(m_{\pi})^{-7} - (m_{\pi})^{-9}$

- Include fermion determinant Full QCD
- Precision results in heavy quark systems
- □ $(m_{\pi})^{-7}$ $(m_{\pi})^{-9}$ limited past nucleon structure to "heavy pion world" - $m_{\pi} \ge 500$ MeV
- Beginning to explore physical "light pion world" $m_{\pi} \ge 300 \text{ MeV}$ - role of chiral symmetry

Resources

US 2006
DOE NP, HEP, ASCR Partnership: 8 sustained Tflop
NERSC, ORNL, ANL, LLNL
NSF centers
2006 world sustained Teraflops for lattice
USLQCD 8
Europe + UK 20 - 25
Japan 14 - 18

Hadron structure revealed by high energy scattering

- High energy scattering measures correlation functions along light cone
 - Asymptotic freedom: reaction theory perturbative
 - Unambiguous measurement of operators in light cone frame
 - Must think about physics on light cone
- Parton distribution q(x) gives longitudinal momentum distribution of light-cone wave function
- □ Generalized parton distribution $q(x, r_{\perp})$ gives transverse spatial structure of light-cone wave function

Parton and generalized parton distributions

High energy scattering: light-cone correlation function $(\lambda = p^+x^-)$

$$\mathcal{O}(x) = \int \frac{d\lambda}{4\pi} e^{i\lambda x} \bar{\psi}(-\frac{\lambda}{2}n) \not n \mathcal{P} e^{-ig \int_{-\lambda/2}^{\lambda/2} d\alpha n \cdot A(\alpha n)} \psi(\frac{\lambda}{2}n)$$

Deep inelastic scattering: diagonal matrix element

$$\langle P|\mathcal{O}(x)|P\rangle = q(x)$$

 $[\not n \to \not n \gamma_5: \Delta q(x)]$

Deeply virtual Compton scattering: off-diagonal matrix element

$$\begin{split} \langle P'|\mathcal{O}(x)|P\rangle &= \langle \gamma \rangle H(x,\xi,t) + \frac{i\Delta}{2m} \langle \sigma \rangle E(x,\xi,t) \\ \Delta &= P' - P, \quad t = \Delta^2, \quad \xi = -n \cdot \Delta/2 \\ [\not n \to \not n \gamma_5 : \quad \tilde{E}(x,\xi,t), \tilde{H}(x,\xi,t)] \end{split}$$

Moments of parton distributions

Expansion of
$$\mathcal{O}(x) = \int \frac{d\lambda}{4\pi} e^{i\lambda x} \bar{\psi}(-\frac{\lambda}{2}n) \not n \mathcal{P} e^{-ig \int_{-\lambda/2}^{\lambda/2} d\alpha n \cdot A(\alpha n)} \psi(\frac{\lambda}{2}n)$$

Generates tower of twist-2 operators

$$\mathcal{O}_q^{\{\mu_1\mu_2\dots\mu_n\}} = \overline{\psi}_q \gamma^{\{\mu_1} i D^{\mu_2} \dots i D^{\mu_n\}} \psi_q$$

Diagonal matrix element

$$\langle P|\mathcal{O}_q^{\{\mu_1\mu_2\dots\mu_n\}}|P\rangle \sim \int dx \, x^{n-1}q(x)$$

$$\begin{split} \langle P' | \mathcal{O}_q^{\{\mu_1 \mu_2 \dots \mu_n\}} | P \rangle &\to A_{ni}(t), B_{ni}(t), C_{n0}(t) \\ \int dx \, x^{n-1} H(x, \xi, t) \sim \sum \xi^i A_{ni}(t) + \xi^n C_{n0}(t) \\ \int dx \, x^{n-1} E(x, \xi, t) \sim \sum \xi^i B_{ni}(t) - \xi^n C_{n0}(t) \\ [\not\!n \to \not\!n \gamma_5 : \quad \tilde{A}_{ni}(t), \tilde{B}_{ni}(t)] \end{split}$$

Moments of parton distributions

Lattice operators: irreducible representations of hypercubic group with minimal operator mixing and minimal non-zero momentum components

Domain wall quarks on a staggered sea

- Improved staggered sea quarks (MILC)
 - \square Economical lattices with large L, small m_{π} , several a
 - Fourth root appears manageable
 - □ RG indicates coefficient of nonlocal term \rightarrow 0
 - Partially quenched staggered XPT accounts well for ugly properties
 - Order a² improved
- Domain wall valence quarks
 - Chiral symmetry avoids operator mixing
 - Order a²
 - Conserved 5-d axial current facilitates renormalization
- Hybrid ChPT available
 - One-loop results have simple chiral behavior

Asqtad Action: $O(a^2)$ perturbatively improved

Symansik improved glue
 \$\Sig(U) = C_0 W^{1 \times 1} + C_1 W^{1 \times 2} + C_2 W^{cube}\$
 Smeared staggered fermions \$\Sig(V,U)\$
 Fat links remove taste changing gluons
 Tadpole improved

HYP Smearing

□ Three levels of SU(3) projected blocking within hypercube

Minimize dislocations - important for DW fermions

$$V_{i,\mu} = \operatorname{Pro} j_{SU(3)}[(1 - \alpha_1)U_{i,\mu} + \frac{\alpha_1}{6} \sum_{\pm \nu \neq \mu} \tilde{V}_{i,\nu;\mu} \tilde{V}_{i+\hat{\nu},\mu;\nu} \tilde{V}_{i+\hat{\mu},\nu;\mu}^{\dagger}],$$

$$\tilde{V}_{i,\mu;\nu} = \operatorname{Pro} j_{SU(3)}[(1 - \alpha_2)U_{i,\mu} + \frac{\alpha_2}{4} \sum_{\pm \rho \neq \nu,\mu} \bar{V}_{i,\rho;\nu,\mu} \bar{V}_{i+\hat{\rho},\mu;\rho,\nu} \bar{V}_{i+\hat{\mu},\rho;\nu;\mu}^{\dagger}],$$

$$\bar{V}_{i,\mu;\nu\rho} = \operatorname{Pro} j_{SU(3)}[(1 - \alpha_3)U_{i,\mu} + \frac{\alpha_3}{2} \sum_{\pm \eta \neq \rho,\nu,\mu} U_{i,\eta} U_{i+\hat{\eta},\mu} U_{i+\hat{\mu},\eta}^{\dagger}].$$

Perturbative renormalization

HYP smeared domain wall fermions - B. Bistrovic

operator	H(4)	NOS	HYP	APE
$\bar{q}[\gamma_5]q$	1_{1}^{\pm}	0.792	0.981	1.046
$\bar{q}[\gamma_5]\gamma_{\mu}q$	4_{4}^{\mp}	0.847	0.976	0.994
$\bar{q}[\gamma_5]\sigma_{\mu\nu}q$	6 [‡]	0.883	0.992	0.993
$\bar{q}[\gamma_5]\gamma_{\{\mu}D_{\nu\}}q$	6^{\pm}_{3}	0.991	0.979	0.954
$ar{q}[\gamma_5]\gamma_{\{\mu}D_{m{V}\}}q$	3_{1}^{\pm}	0.982	0.975	0.951
$\bar{q}[\gamma_5]\gamma_{\{\mu}D_{\nu}D_{\alpha\}}q$	8^{\mp}_{1}	1.134	0.988	0.934
$ar{q}[\gamma_5]\gamma_{\{\mu}D_{ u}D_{lpha\}}q$	mixing	$5.71 imes 10^{-3}$	$1.88 imes10^{-3}$	$8.21 imes 10^{-4}$
$\bar{q}[\gamma_5]\gamma_{\{\mu}D_{ m V}D_{lpha\}}q$	4^{\mp}_{2}	1.124	0.987	0.934
$\bar{q}[\gamma_5]\gamma_{\{\mu}D_{ u}D_{lpha}D_{eta\}}q$	2^{\pm}_{1}	1.244	0.993	0.919
$\bar{q}[\gamma_5]\sigma_{\mu\{\nu}D_{\alpha\}}q$	8^{\pm}_{1}	1.011	0.994	0.964
$\bar{q}[\gamma_5]\gamma_{[\mu}D_{V]}q$	6_{1}^{\mp}	0.979	0.982	0.989
$ar{q}[\gamma_5]\gamma_{[\mu}D_{\{ u\}}D_{lpha\}}q$	8_{1}^{\pm}	0.955	0.959	0.965

$$O_i^{\overline{MS}}(Q^2) = \sum_j \left(\delta_{ij} + \frac{g_0^2}{16\pi^2} \frac{N_c^2 - 1}{2N_c} \left(\gamma_{ij}^{\overline{MS}} \log(Q^2 a^2) - (B_{ij}^{LATT} - B_{ij}^{\overline{MS}}) \right) \right) \cdot O_j^{LATT}(a^2)$$

Numerical calculations

- Improved staggered sea quarks (MILC configurations)
 N_F = 3, a=0.125 fm
- Domain wall valence quarks
 - \Box L_s = 16, M = 1.7
 - Masses and volumes:

mπ	configs	Vol	L (fm)
761	425	20 ³	2.5
693	350	20 ³	2.5
544	564	20 ³	2.5
486	498	20 ³	2.5
354	655	20 ³	2.5
354	270	28 ³	3.5

18

Matrix elements on the lattice

 J^{\dagger} : Current with quantum numbers of proton $|\psi_J\rangle = J^{\dagger}|\Omega\rangle$ Trial function

$$\langle TJ(t_3) \mathcal{O}(t_2) J^{\dagger}(t_1) \rangle = \sum_{m,n} \langle \psi_J | n \rangle \langle n | \mathcal{O} | m \rangle \langle m | \psi_J \rangle e^{-E_n(t_3 - t_2) - E_m(t_2 - t_1)}$$

$$\downarrow^{t_3} \stackrel{t_2}{\longrightarrow} \stackrel{t_1}{\longrightarrow} \stackrel{t_3 - t_2 \gg 1}{\xrightarrow{t_3 - t_2 \gg 1}} |\langle \psi_J | 0 \rangle|^2 \langle 0 | \mathcal{O} | 0 \rangle e^{-E_0(t_3 - t_1)}$$

Normalize:

$$\begin{split} \left\langle TJ(t_3) J^{\dagger}(t_1) \right\rangle &= \sum_n \left| \left\langle \psi_J \left| n \right\rangle \right|^2 e^{-E_n(t_3 - t_1)} \\ & \xrightarrow[t_3 - t_1 \gg 1]{} \left| \left\langle \psi_J \left| 0 \right\rangle \right|^2 e^{-E_0(t_3 - t_1)} \\ \end{split}$$

$$\Longrightarrow \qquad \left\langle 0 \left| \mathcal{O} \right| 0 \right\rangle &= \frac{\left\langle J \mathcal{O} J^{\dagger} \right\rangle}{\left\langle J J^{\dagger} \right\rangle} = \frac{\textcircled{}}{\textcircled{}}$$

Overdetermined system for form factors

Calculate ratio

$$R_{\mathcal{O}}(\tau, P', P) = \frac{C_{\mathcal{O}}^{3\text{pt}}(\tau, P', P)}{C^{2\text{pt}}(\tau_{\text{snk}}, P')} \left[\frac{C^{2\text{pt}}(\tau_{\text{snk}} - \tau + \tau_{\text{src}}, P) \ C^{2\text{pt}}(\tau, P') \ C^{2\text{pt}}(\tau_{\text{snk}}, P')}{C^{2\text{pt}}(\tau_{\text{snk}} - \tau + \tau_{\text{src}}, P') \ C^{2\text{pt}}(\tau, P) \ C^{2\text{pt}}(\tau_{\text{snk}}, P)} \right]^{1/2}$$

Perturbative renormalization

$$\begin{split} \mathcal{O}_i^{\overline{\mathrm{MS}}}(\mu) &= \sum_j Z_{ij}(\mu, a) \mathcal{O}_j^{\mathrm{lat}}(a) \\ \langle P' | \, \mathcal{O}_i^{\overline{\mathrm{MS}}} \, | P \rangle &= \sqrt{E(P')E(P)} \sum_j Z_{ij} \overline{R}_j \\ \langle P' | \, \mathcal{O}_{\{\mu_1 \mu_2 \dots \mu_n\}}^q \, | P \rangle &= \sum_i a_i A_{ni}^q + \sum_j b_j B_{nj}^q + c C_n^q \end{split}$$

Schematic form

$$\begin{aligned} \langle \mathcal{O}_i^{cont} \rangle &= \sum_j a_{ij} \mathcal{F}_j \\ \langle \mathcal{O}_i^{cont} \rangle &= \sqrt{E'E} \sum_j Z_{ij} \overline{R}_j \\ \overline{R}_i &= \frac{1}{\sqrt{E'E}} \sum_{jk} Z_{ij}^{-1} a_{jk} \mathcal{F}_k \\ &\equiv \sum_j a'_{ij} \mathcal{F}_j \,. \end{aligned}$$

Nucleon axial charge in full lattice QCD

 $\Box Why g_A?$

Matrix element of axial current $A_{\mu} = \bar{q}\gamma_{\mu}\gamma_{5}\frac{\vec{\tau}}{2}q$ $\langle N(p+q)|A_{\mu}|N(p)\rangle = \bar{u}(p+q)\frac{\vec{\tau}}{2}\left[g_{A}(q^{2})\gamma_{\mu}\gamma_{5} + g_{P}(q^{2})q_{\mu}\gamma_{5}\right]u(p)$

 $g_A(0) = 1.2695 \pm 0.0029$

- □ Adler Weisberger $g_A^2 1 \sim \int (\sigma_{\pi^+ p} \sigma_{\pi^- p})$
- □ Goldberger Treiman $g_A \rightarrow f_\pi g_{\pi NN}/M_N$
- Spin content $\langle 1 \rangle_{\Delta q} = \int_0^1 dx [\Delta q(x) + \Delta \bar{q}(x)]$

 $g_A = \langle 1 \rangle_{\Delta u} - \langle 1 \rangle_{\Delta d}$ $\Sigma = \langle 1 \rangle_{\Delta u} + \langle 1 \rangle_{\Delta d} + \langle 1 \rangle_{\Delta s}$

Nucleon axial charge

Gold-Plated observable

Accurately measured

No disconnected diagrams

 Chiral perturbation theory for
 g_A(m²_π, V)

 Renormalization - 5-d conserved current

hep-lat/0510062

Nucleon Axial Charge

Chiral perturbation theory $g_A(m_{\pi}^2, V)$

Beane and Savage hep-ph/0404131

Detmold and Lin hep-lat/0501007

I-loop theory has 6 parameters

 \Box Fix $f_{\pi}, m_{\Delta} - m_N, g_{\Delta N}$ (0.3% error)

 \Box Fit $g_A, g_{\Delta\Delta}, C$

 \Box Result $g_A(m_{\pi} = 140) = 1.212 \pm 0.084$

Chiral expansion of axial charge

$$\begin{split} \Gamma_{NN} &= g_A - i \frac{4}{3f^2} [4g_A^3 J_1(m_\pi, 0, \mu) \\ &+ 4(g_{\Delta N}^2 g_A + \frac{25}{81} g_{\Delta N}^2 g_{\Delta \Delta}) J_1(m_\pi, \Delta, \mu) \\ &+ \frac{3}{2} g_A R_1(m_\pi, \mu) \\ &- \frac{32}{9} g_{\Delta N} g_A N_1(m_\pi, \Delta, \mu)] \\ &+ C m_\pi^2 \end{split}$$

Beane and Savage hep-ph/0404131

$$\begin{aligned} J_1(m, \Delta, \mu) &= -\frac{3}{4} \frac{i}{16\pi^2} \left[(m^2 - 2\Delta^2) \log \frac{m^2}{\mu^2} + 2\Delta F(m, \Delta) \right] \\ R_1(m, \mu) &= \frac{i}{16\pi^2} m^2 \left[\Gamma(\epsilon) + 1 - \log \frac{m^2}{\mu^2} \right] \\ N_1(m, \Delta, \mu) &= -\frac{3}{4} \frac{i}{16\pi^2} \left[(m^2 - \frac{2}{3}\Delta^2) \log \frac{m^2}{\mu^2} + \frac{2}{3}\Delta F(m, \Delta) + \frac{2}{3} \frac{m^2}{\Delta} [\pi m - F(m, \Delta)] \right] \\ f(m, \Delta) &= \sqrt{\Delta^2 - m^2 - i\epsilon} \log \left(\frac{\Delta - \sqrt{\Delta^2 - m^2 - i\epsilon}}{\Delta + \sqrt{\Delta^2 - m^2 - i\epsilon}} \right) \end{aligned}$$

Nucleon axial charge $g_A \langle 1 \rangle_{\Delta q}^{u-d}$

Nucleon axial charge $g_A \langle 1 \rangle_{\Delta q}^{u-d}$

Chiral Perturbation Theory

Self-consistently improved I-loop ChPTHeavy Baryon ChPTexpand in $\frac{p}{\Lambda_{\chi}}, \frac{m_{\pi}}{\Lambda_{\chi}}, \frac{p}{M_N}, \frac{m_{\pi}}{M_N}$ Covariant BaryonChPTsum all powers $\left(\frac{1}{M_N}\right)^n$ ChPT with finite range regulators

GFF	HBChPT	CBChPT	expected dependence on m_{π}, t
A_{20}^{u-d}	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2)$	non-analytic in m_{π} , \approx linear in t
B_{20}^{u-d}		$\mathcal{O}(p^2) + \text{corr. of } \mathcal{O}(p^3)$	non-analytic in m_{π} , \approx linear in t
C_{20}^{u-d}		$\mathcal{O}(p^2) + \text{corr. of } \mathcal{O}(p^3)$	non-analytic in m_{π} , \approx linear in t
A_{20}^{u+d}		$\mathcal{O}(p^2) + \text{corr. of } \mathcal{O}(p^3)$	non-analytic in m_{π} and t
B_{20}^{u+d}	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2) + \mathcal{O}(p^3)$ -CTs	non-analytic in m_{π} and t
C_{20}^{u+d}		$\mathcal{O}(p^2) + \text{corr. of } \mathcal{O}(p^{3,4})$	non-analytic in m_{π} and t
$J^{u+d} = 1/2(A+B)_{20}^{u+d}$		$\mathcal{O}(p^2) + \text{corr. of } \mathcal{O}(p^3)$	
$E_{20}^{u+d} = (A + t/(4m_N)^2 B)_{20}^{u+d}$	$\mathcal{O}(p^2)$		linear in m_{π}^2 and t
$M_{20}^{u+d} = (A+B)_{20}^{u+d}$	$\mathcal{O}(p^2)$		non-analytic in m_{π} and t
C_{20}^{u+d}	$\mathcal{O}(p^2)$		non-analytic in m_{π} and t
$J^{u+d} = 1/2(A+B)_{20}^{u+d}$	$\mathcal{O}(p^2)$		
$J^{u+d} = 1/2(A+B)_{20}^{u+d}$	$\mathcal{O}(p^2)$ with Δ		

for example, unpolarized moments

$$\langle x^n \rangle_{u-d} = a_n \left(1 - \frac{(3g_{A,0}^2 + 1)}{(4\pi f_{\pi,0})^2} m_\pi^2 \ln\left(\frac{m_\pi^2}{\mu^2}\right) \right) + b'_n(\mu) m_\pi^2$$

• choose $\mu=f_{\pi,0}$, and at one loop $g_{A,0} o g_{A,m_\pi}$ and $f_{\pi,0} o f_{\pi,m_\pi}$

$$\langle x^n \rangle_{u-d} = a_n \left(1 - \frac{(3g_{A,m_\pi}^2 + 1)}{(4\pi)^2} \frac{m_\pi^2}{f_{\pi,m_\pi}^2} \ln\left(\frac{m_\pi^2}{f_{\pi,m_\pi}^2}\right) \right) + b_n \frac{m_\pi^2}{f_{\pi,m_\pi}^2}$$

• self consistently $g_A o g_{A, {
m lat}}, \; f_\pi o f_{\pi, {
m lat}}, \; m_\pi o m_{\pi, {
m lat}}$

$$\langle x^{n} \rangle_{u-d} = a_{n} \left(1 - \frac{(3g_{A,\text{lat}}^{2} + 1)m_{\pi,\text{lat}}^{2}}{(4\pi)^{2}} \ln \left(\frac{m_{\pi,\text{lat}}^{2}}{f_{\pi,\text{lat}}^{2}} \right) \right) + b_{n} \frac{m_{\pi,\text{lat}}^{2}}{f_{\pi,\text{lat}}^{2}}$$

similarly for the helicity and transversity moments

$$\begin{split} \langle x^{n} \rangle_{\Delta u - \Delta d} &= \Delta a_{n} \left(1 - \frac{(2g_{A,\text{lat}}^{2} + 1)m_{\pi,\text{lat}}^{2}}{(4\pi)^{2}} \ln \left(\frac{m_{\pi,\text{lat}}^{2}}{f_{\pi,\text{lat}}^{2}} \right) \right) + \Delta b_{n} \frac{m_{\pi,\text{lat}}^{2}}{f_{\pi,\text{lat}}^{2}} \\ \langle x^{n} \rangle_{\delta u - \delta d} &= \delta a_{n} \left(1 - \frac{(4g_{A,\text{lat}}^{2} + 1)m_{\pi,\text{lat}}^{2}}{2(4\pi)^{2}} \ln \left(\frac{m_{\pi,\text{lat}}^{2}}{f_{\pi,\text{lat}}^{2}} \right) \right) + \delta b_{n} \frac{m_{\pi,\text{lat}}^{2}}{f_{\pi,\text{lat}}^{2}} \end{split}$$

Chiral extrapolation of $\langle x \rangle_q^{u-d} = A_{20}^{u-d}(t=0)$

Chiral extrapolation O(p²) covariant ChPT (Dorati, Hemmert, et. al.)

$$A_{20}^{u-d}(t,m_{\pi}) = A_{20}^{0,u-d} \left(f_A^{u-d}(m_{\pi}) + \frac{g_A^2}{192\pi^2 f_{\pi}^2} h_A(t,m_{\pi}) \right) + \widetilde{A}_{20}^{0,u-d} j_A^{u-d}(m_{\pi}) + A_{20}^{m_{\pi},u-d} m_{\pi}^2 + A_{20}^{t,u-d} t$$

Chiral extrapolation of $\langle x \rangle_q^{u-d} = A_{20}^{u-d}(t=0)$

Chiral extrapolation $O(p^2)$ covariant BChPT Heavy baryon limit (dotted curve) HBChPT fit: t < 0.3 GeV², m_{π} < 0.5 GeV (dashed curve)

Chiral extrapolation of $\langle x \rangle_q^{u+d} = A_{20}^{u+d}(t=0)$

Chiral extrapolation O(p²) relativistic ChPT (Dorati, Hemmert, et. al.) Note: connected diagrams only

$$A_{20}^{u+d}(t,m_{\pi}) = A_{20}^{0,u+d} \left(f_A^{u+d}(m_{\pi}) - \frac{g_A^2}{64\pi^2 f_{\pi}^2} h_A(t,m_{\pi}) \right) + A_{20}^{m_{\pi},u+d} m_{\pi}^2 + A_{20}^{t,u+d} t + \Delta A_{20}^{u+d}(t,m_{\pi}) + \mathcal{O}(p^3)$$

Chiral extrapolation of $\langle x \rangle_q^{u+d} = A_{20}^{u+d}(t=0)$

Chiral extrapolation $O(p^2)$ covariant BChPT Heavy baryon limit (dotted line) HBChPT fit: t < 0.3 GeV², m_{π} < 0.5 GeV (dashed line)

Quark spin contribution to Nucleon Spin

 $\Delta \Sigma = \langle 1 \rangle_{\Delta u} + \langle 1 \rangle_{\Delta d}$

Electromagnetic form factors

Simplest off-diagonal matrix element

$$\langle p|\bar{\psi}\gamma^{\mu}\psi|p'\rangle = \bar{u}(p)[F_1(q^2)\gamma^{\mu} + F_2(q^2)\frac{i\sigma^{\mu\nu}q_{\nu}}{2m}]u(p')$$

$$G_E(q^2) = F_1(q^2) - \frac{q^2}{4M^2}F_2(q^2)$$
 $G_M(q^2) = F_1(q^2) + F_2(q^2)$

□ Fourier transform of charge density if $L_{system} \gg L_{wavepacket} \gg \frac{1}{m}$

□ Pb: 5 fm >> 10⁻³ fm, Proton: 0.8 fm ~ 0.2 fm: marginal

□ For transverse Fourier transform of light cone w. f., m \rightarrow p₊ ~ ∞

Large q²: ability of one quark to share q² with other constituents to remain in ground state - q² counting rules

F₁ Isovector Form Factor

$$\langle r^2 \rangle^{u-d} = a_0 - \frac{(1+5g_A^2)}{(4\pi f_\pi)^2} \log\left(\frac{m_\pi^2}{m_\pi^2 + \Lambda^2}\right)$$

Form factor ratio: F_2/F_1

Polarization transfer at JLab

Lattice results

Polarized Nucleon Form Factors GA and GP

 $\langle p|\bar{\psi}\gamma^{\mu}\gamma_{5}\psi|p'\rangle = \bar{u}(p)[G_{A}(q^{2})\gamma^{\mu}\gamma_{5} + q^{\mu}\gamma_{5}G_{P}(q^{2}) + \sigma^{\mu\nu}\gamma_{5}q_{\nu}G_{M}(q^{2})]u(p')$

Bernard, Elouadrhiri, Meissner, J. Phys. G Nucl. Part. Phys. 2002, RI

pion electroproduction \blacklozenge $\nu_{\mu} n \rightarrow \mu^{-} p$ pion electroproduction • $\mu^- p \rightarrow \nu_\mu n$ •

Milos 2007 J.W. Negele

40

Form factor ratio: G_A/F_I

Form factor ratio: GP/GA

soft pion pole:

$$G_P(q^2) \sim \frac{4M^2 G_A(q^2)}{q^2 - m_\pi^2}$$

Form factor ratio: G_P/G_A

Generalized Parton Distributions

Fig. from G. Schierholz

Generalized form factors

$$\mathcal{O}_{q}^{\{\mu_{1}\mu_{2}\dots\mu_{n}\}} = \overline{\psi}_{q}\gamma^{\{\mu_{1}}iD^{\mu_{2}}\dots iD^{\mu_{n}\}}\psi_{q} \qquad \qquad \bar{P} = \frac{1}{2}(P'+P)$$
$$\langle P'|\mathcal{O}^{\mu_{1}}|P\rangle = \langle \langle \gamma^{\mu_{1}} \rangle A_{10}(t) \qquad \qquad \Delta = P'-P$$

+
$$\frac{i}{2m} \langle\!\langle \sigma^{\mu_1 \alpha} \rangle\!\rangle \Delta_{\alpha} B_{10}(t)$$
,

$$\begin{split} \langle P' | \mathcal{O}^{\{\mu_1 \mu_2\}} | P \rangle &= \bar{P}^{\{\mu_1} \langle\!\langle \gamma^{\mu_2\}} \rangle\!\rangle A_{20}(t) \\ &+ \frac{i}{2m} \bar{P}^{\{\mu_1} \langle\!\langle \sigma^{\mu_2\} \alpha} \rangle\!\rangle \Delta_{\alpha} B_{20}(t) \\ &+ \frac{1}{m} \Delta^{\{\mu_1} \Delta^{\mu_2\}} C_2(t) \,, \end{split}$$

$$\begin{split} \langle P' | \mathcal{O}^{\{\mu_1 \mu_2 \mu_3\}} | P \rangle &= \bar{P}^{\{\mu_1} \bar{P}^{\mu_2} \langle\!\langle \gamma^{\mu_3} \rangle\!\rangle A_{30}(t) \\ &+ \frac{i}{2m} \bar{P}^{\{\mu_1} \bar{P}^{\mu_2} \langle\!\langle \sigma^{\mu_3} \rangle\!\rangle \Delta_{\alpha} B_{30}(t) \\ &+ \Delta^{\{\mu_1} \Delta^{\mu_2} \langle\!\langle \gamma^{\mu_3} \rangle\!\rangle A_{32}(t) \\ &+ \frac{i}{2m} \Delta^{\{\mu_1} \Delta^{\mu_2} \langle\!\langle \sigma^{\mu_3} \rangle\!^\alpha \rangle\!\rangle \Delta_{\alpha} B_{32}(t), \end{split}$$

 $t=\Delta^2$

Limits of generalized form factors

□ Moments of parton distributions $t \rightarrow 0$

$$A_{n0} = \int dx x^{n-1} q(x)$$

Electromagnetic form factors

$$A_{10} = F_1(t), \quad B_{10} = F_2(t)$$

Total quark angular momentum

 $J_q = \frac{1}{2} [A(0)_{20} + B(0)_{20}]$

Sum Rules

Momentum sum rule

$$1 = A_{20,q}(0) + A_{20,g}(0) = \langle x \rangle_q + \langle x \rangle_g$$

Nucleon spin sum rule

$$\frac{1}{2} = \frac{1}{2} \left(A_{20,q}(0) + A_{20,g}(0) + B_{20,q}(0) + B_{20,g}(0) \right)$$
$$= \frac{1}{2} \Delta \Sigma_q + L_q + J_g$$

Vanishing of anomalous gravitomagnetic moment

 $0 = B_{20,q}(0) + B_{20,g}(0)$

Transverse structure of nucleon

 $H(x, 0, -\Delta_{\perp}^{2})$ is transverse Fourier transform of light cone quark distribution $q(x,r_{\perp})$ at momentum fraction x

$$q(x,r_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H(x,0,-\Delta_{\perp}^2) e^{-ir_{\perp}\Delta_{\perp}}$$
$$\int dx x^{n-1} q(x,r_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} A(-\Delta_{\perp}^2) e^{-ir_{\perp}\Delta_{\perp}}$$

 $\square x \rightarrow I$: Single Fock space component \Rightarrow slope $\rightarrow 0$

 $\square x \neq I$: Transverse structure \Rightarrow slope steeper

Generalized form factors from lattice

Transverse size of light-cone wave function

$$x_{\rm av}^n = \frac{\int d^2 r_\perp \int dx \, x \cdot x^{n-1} q(x, \vec{r}_\perp)}{\int d^2 r_\perp \int dx x^{n-1} q(x, \vec{r}_\perp)}$$

 $q(x, \vec{r_{\perp}})$ model (Burkardt hep-ph/0207047)

Generalized form factors A10, A20, A30

Milos 2007 J.W. Negele

51

Generalized form factor ratios A₃₀ / A₁₀

GPD parameterization: Nucleon form factors, CTEQ parton distributions, Regge behavior, Ansatz Diehl, Feldmann, Jakob, Kroll EPJC 2005

First x moments:

 A_{20}, B_{20}, C_{20}

Consistent with large N behavior [Goeke et. al.]

$ A_{20}^{u+d} $	>	$ A_{20}^{u-d} $
$ B_{20}^{u-d} $	>	$ B_{20}^{u+d} $
$ C_{20}^{u+d} $	>	$ C_{20}^{u-d} $

Origin of nucleon spin

"Spin crisis" - only ~ 30% arises from quark spins quark spin contribution $\frac{1}{2}\Delta\Sigma = \frac{1}{2}\langle 1 \rangle_{\Delta u + \Delta d} \sim \frac{1}{2}0.682(18)$ total quark contribution (spin plus orbital)

$$J_q = \frac{1}{2} [A_{20}^{u+d}(0) + B_{20}^{u+d}(0)] = \frac{1}{2} [\langle x \rangle_{u+d} + B_{20}^{u+d}(0)] \sim \frac{1}{2} 0.675(7)$$

Spin Inventory 68% quark spin 0% quark orbital 32% gluons

Nucleon spin decomposition

55

Nucleon spin decomposition

LHPC hep-lat/0705.4295

56

Quark spin contribution to Nucleon Spin

 $\Delta \Sigma = \langle 1 \rangle_{\Delta u} + \langle 1 \rangle_{\Delta d}$

Chiral extrapolation of $J_q = \frac{1}{2} (A_{20}^{u+d}(0) + B_{20}^{u+d}(0))$

ChPT including Delta (Chen and Ji)

$$J_q(m_{\pi};\Delta) = J_q(m_{\pi}) - \frac{1}{2} \left(\frac{9}{2} b_{qN} + 3a_{q\pi} - \frac{15}{2} b_{q\Delta} \right) \frac{8g_{\pi N\Delta}^2}{9(4\pi f_{\pi})^2} (m_{\pi}^2 - 2\Delta^2) \ln\left(\frac{m_{\pi}^2}{\Lambda_{\chi}^2}\right) + 2\Delta\sqrt{\Delta^2 - m_{\pi}^2} \ln\left(\frac{\Delta - \sqrt{\Delta^2 - m_{\pi}^2}}{\Delta + \sqrt{\Delta^2 - m_{\pi}^2}}\right)$$

Summary of Nucleon Spin

□ HERMES - Fraction of spin from quark spin $\Box \Sigma^{u} = .84 \pm .01 \Sigma^{d} = -0.43 \pm .01 \Sigma^{u+d} = 0.42 \pm .02$ Lattice - Connected Diagrams $\Box \Sigma^{u} \sim .8$ $\Sigma^{d} \sim -.4$ $\Sigma^{u+d} = 0.41 \pm .06$ $\Box 2L^{u} \sim .3$ $2L^{u} \sim -.3$ $2L^{u+d} \sim 0$ $2J^{u+d} = 0.42 \pm .06$

Chiral extrapolation of $\langle x \rangle_q^{u-d} = A_{20}^{u-d}(t=0)$

Chiral extrapolation O(p²) covariant ChPT (Dorati, Hemmert, et. al.)

$$A_{20}^{u-d}(t,m_{\pi}) = A_{20}^{0,u-d} \left(f_A^{u-d}(m_{\pi}) + \frac{g_A^2}{192\pi^2 f_{\pi}^2} h_A(t,m_{\pi}) \right) + \widetilde{A}_{20}^{0,u-d} j_A^{u-d}(m_{\pi}) + A_{20}^{m_{\pi},u-d} m_{\pi}^2 + A_{20}^{t,u-d} t$$

60

Chiral extrapolation

Chiral extrapolation $O(p^2)$ covariant BChPT t and m_{π} dependence

Chiral Extrapolation of $B_{20}^{u+d}(t, m_{\pi})$ Chiral extrapolation $O(p^4)$ relativistic ChPT $O(p^5)$ corrections Note: connected diagrams only (Dorati, Hemmert, et. al.) $B_{20}^{u-d}(t,m_{\pi}) = \frac{m_N(m_{\pi})}{m_N} \left\{ B_{20}^{0,u-d} + A_{20}^{0,u-d} g_B(t,m_{\pi}) + \delta_B^t t + \delta_B^{m_{\pi}} m_{\pi}^2 \right\}$ 0.2 0 B₂₀ -0.2 0.6 0.4 0.4 -t[GeV2] 0.2 $m_{\pi}^{2}[GeV^{2}]$ 0.2 0 0

I.W. Negele

Chiral Extrapolation of $C_{20}^{u+d}(t, m_{\pi})$

Chiral extrapolation O(p4) relativistic ChPT O(p5) correctionsNote: connected diagrams only(Dorati, Hemmert, et. al.)

$$C_{20}^{u-d}(t,m_{\pi}) = \frac{m_N(m_{\pi})}{m_N} \left\{ C_{20}^{0,u-d} + A_{20}^{0,u-d} g_C(t,m_{\pi}) + \delta_C^t t + \delta_C^{m_{\pi}} m_{\pi}^2 \right\}$$

63

Gluon contributions to the pion mass and light cone momentum fraction

Energy-momentum tensor Harvey Meyer and J.N. arXiv 0707.3225

$$T_{\mu\nu} \equiv \overline{T}_{\mu\nu}^{g} + \overline{T}_{\mu\nu}^{f} + \frac{1}{4} \delta_{\mu\nu} (S^{g} + S^{f}),$$

$$\overline{T}_{\mu\nu}^{g} = \frac{1}{4} \delta_{\mu\nu} F_{\rho\sigma}^{a} F_{\rho\sigma}^{a} - F_{\mu\alpha}^{a} F_{\nu\alpha}^{a},$$

$$\overline{T}_{\mu\nu}^{f} = \frac{1}{4} \sum_{f} \overline{\psi}_{f} \overrightarrow{D}_{\mu} \gamma_{\nu} \psi_{f} + \overline{\psi}_{f} \overrightarrow{D}_{\nu} \gamma_{\mu} \psi_{f} - \frac{1}{2} \delta_{\mu\nu} \overline{\psi}_{f} \overrightarrow{D}_{\rho} \gamma_{\rho} \psi_{f},$$

$$S^{g} = \beta(g)/(2g) F_{\rho\sigma}^{a} F_{\rho\sigma}^{a}, \quad S^{f} = [1 + \gamma_{m}(g)] \sum_{f} \overline{\psi}_{f} m \psi_{f}$$
For on shell particle

$$\langle \Psi, \mathbf{p} | \int d^{3}\mathbf{z} \overline{T}_{00}^{f,g}(z) | \Psi, \mathbf{p} \rangle = [E_{\mathbf{p}} - \frac{1}{4} M^{2} / E_{\mathbf{p}}] \langle x \rangle_{f,g},$$

$$\langle \Psi, \mathbf{p} | \int d^{3}\mathbf{z} S^{f,g}(z) | \Psi, \mathbf{p} \rangle = (M^{2} / E_{\mathbf{p}}) b_{f,g},$$

$$\langle x \rangle_{f} + \langle x \rangle_{g} = b_{f} + b_{g} = 1,$$
In infinite momentum frame $\langle x \rangle_{g}$ = momentum fraction

In rest frame, \overline{T}_{00}^{g} contributes $\frac{3}{4}\langle x \rangle_{g}M$ to mass S^{g} contributes $\frac{1}{4}b_{g}M$ to mass (trace anomaly)

Evaluation of $\overline{T}_{00}^{g} = \frac{1}{2}(-\mathbf{E}^{a} \cdot \mathbf{E}^{a} + \mathbf{B}^{a} \cdot \mathbf{B}^{a})$

- Notoriously difficult: 5000 configurations no signal
- Improved operator E² B²
- Evaluate with plaquett or clover
- Use bare or HYP smeared links
- Compare variance of entropy density at 1.26 T_C
- Normalize operator by ratio to known bare plaquette

		relative variance		normalization	
		bare	HYP	bare	HYP
\overline{T}_{00}	plaq.	26.4(71)	0.6518(43)	1	0.5489(68)
	clover	3.85(11)	0.3049(41)	2.184(67)	0.613(20)
S	plaq.	2.64(12)	0.474(13)	1	0.9951(77)
	clover	1.180(39)	0.2975(72)	4.062(30)	1.410(13)

Calculation of
$$\langle x \rangle_{g}^{bare}$$

Quenched Wilson fermions, β =6.0 m = 890 MeV 3066 configs

 $\langle x \rangle_{\rm g}^{\rm bare} = 0.36(8)$

Renormalization

Renormalization in singlet sector $\begin{vmatrix} \overline{T}_{00}^{g}(\mu) \\ \overline{T}_{00}^{f}(\mu) \end{vmatrix} = \begin{vmatrix} Z_{gg} & 1 - Z_{ff} \\ 1 - Z_{gg} & Z_{ff} \end{vmatrix} \begin{vmatrix} \overline{T}_{00}^{g}(g_{0}) \\ \overline{T}_{00}^{f}(g_{0}) \end{vmatrix}$ Quenched: $Z_{gg} = I$ $\langle x \rangle_{g}(\mu^{2}) = \langle x \rangle_{g} + [1 - Z_{ff}(a\mu, g_{0})] \langle x \rangle_{f}$ $\langle x \rangle_{\rm f}(\mu^2) = Z_{\rm ff}(a\mu, g_0) \langle x \rangle_{\rm f}$ Note: $\langle x \rangle_{\rm f} = Z_f(g_0) \langle x \rangle_{\rm f}^{\rm bare}$ $Z_f(g_0) = 1.0(2)$ $Z_{ff}(a\mu, g_0)Z_f(g_0) = 0.99(4)$ Guagnelli et al. hep-lat/0405027 Final result: $\langle x \rangle_{g}^{(\pi)}(\mu_{\overline{MS}}^{2} = 4 \text{GeV}^{2}) = 0.37(8)(12) \qquad (M_{\pi} = 890 \text{MeV})$ phenomenology = 0.38(5)Tests: $\langle x \rangle_{\sigma}^{(\pi)} + \langle x \rangle_{f}^{(\pi),\text{lattice}} = 0.99(8)(12)$ Guagnelli et al. hep-lat/0405027 $\langle x \rangle^G_{\sigma} = 1.16(.18)$

67

Trace anomaly contribution to mass

 \Box b_g ~ < E² + B² > statistically accurate

- In absence of chiral symmetry, bg acquires linearly divergent term from mixing with quarks.
- Strong mass dependence, since missing disconnected diagrams ~ I/m
- □ Result: $b_g^{(\pi)(bare)}$ ~ 0.9(1) at largest mass Ji hep-ph/9410274 ~ $b_g = 0.88(5)$ in proton

Repeat with domain wall fermions

Insight into how QCD works: classical solutions

Stationary phase approximation

$$\int D[A] e^{-\int d^4 x S[A]} \sim [\det S'']^{-1} e^{-\int d^4 x S[A_{cl}]}$$

Instanton solutions connect vacuua with different winding numbers

$$A^a_\mu(x) = \frac{2\eta_{a\mu\nu}x_\nu}{x^2 + \rho^2}$$

$$S = \frac{1}{4} \int F^2 = \frac{8\pi^2}{g^2}, \quad Q = \frac{q^2}{32\pi^2} \int F\tilde{F} = 1$$

To what extent are analytic expectations observed on lattice?

Instantons on the lattice

Cooling (relaxation) reveals lumps with $S \sim \frac{8\pi^2}{a^2}$ and $Q \sim \pm 1$

□ For small size ρ, distribution $∝ρ^6$

Chu, Grandy, Huang, JN hep-lat/9312071

Instantons on the lattice

Observables calculated with only instantons close to those including all gluons

- Observe quark zero modes localized at instantons
- Zero modes from instantons generate and dominate light quark propagators
- Topological susceptibility from instantons, X= (180MeV), yields η' mass

Confinement from instantons

Ensemble of regular gauge instantons yields area law hep-th/0306105

Diquark correlations in heavy light light baryon

ŦŦŦŦ

14

12

10

Good diquarks: color antitriplet flavor antisymmetric spin singlet

 $(uC\gamma_5 d)h$

6

0.025

0.02

0.015

0.01

0.005

0

0

2

4

r^2 <rho> (not normalized)

Patrick Varilly - senior thesis

 $\langle \rho(r) \rangle$

Summary

Entering era of quantitative solution in chiral regime

- Moments of quark distributions
- □ Form factors: F_1 , F_2 , G_A , G_P , $N \rightarrow$ Delta
- □ Generalized form factors A B C
 - □ Transverse structure
 - Origin of nucleon spin
- Beginning to calculate gluon observables
- □ Insight: instantons, diquarks, dependence on parameters

Current effort and future work

Full QCD with chiral fermions in chiral regime

LHPC/RBC/UKQCD collaboration

 \square m_{π} = 360, 315, 260 MeV, a = 0.93 fm

- 3.3 Tfyrs approved in 08, proposing 11 at ANL
- Unprecedented precision
- Disconnected diagrams
 - Calculate proton and neutron separately, not just difference
 - Eigenmode expansion deflation
- Gluon distributions
 - Nucleon momentum fraction
 - Total contribution of gluons to nucleon spin

75

MIT Blue Gene Computer

