Towards the QCD spectrum using a space-time lattice

Colin Morningstar
(Carnegie Mellon University)
$7^{\text {th }}$ European Conference on Electromagnetic Interactions with Nucleons and Nuclei
Milos Island, Greece
September 10, 2007

Lattice Hadron Physics Collaboration

- charge from Nathan Isgur to use Monte Carlo method to extract the spectrum of baryon resonances (Hall B at JLab)
- formed the Lattice Hadron Physics Collaboration (LHPC)
- acquired funding through DOE SciDAC to build large computing cluster at JLab (also at Fermilab and Brookhaven), develop software
- LHPC has several broad goals
- compute QCD spectrum (baryons, mesons,...)
- hadron structure (form factors, structure functions,...)
- hadron-hadron interactions
- current members of spectroscopy effort:
- John Bulava, Robert Edwards, George Fleming, Justin Foley, Jimmy Juge, Adam Lichtl, CM, David Richards, Steve Wallace

LHPC spectroscopy efforts

- extracting spectrum of resonances is big challenge!!
- need sets of extended operators (correlator matrices)
- multi-hadron operators needed too
a deduce resonances from finite-box energies
a anisotropic lattices $\left(a_{t}<a_{s}\right)$
- inclusion of light-quark loops at realistically light quark mass
- long-term project
- this talk is a brief status report
- operator construction
smearing and pruning, selection of operators
- initial results
- use of stochastic all-to-all quark propagators

Energies from correlation functions

- stationary state energies extracted from asymptotic decay rate of temporal correlations of the fields (imaginary time formalism) evolution in Heisenberg picture $\phi(t)=e^{H t} \phi(0) e^{-H t}(H=H a m i l t o n i a n)$
- spectral representation of a simple correlation function
- assume transfer matrix, ignore temporal boundary conditions
- focus only on one time ordering

$$
\begin{aligned}
\langle 0| \phi(t) \phi(0)|0\rangle & =\sum^{n}\langle 0| e^{H t} \phi(0) e^{-H t}|n\rangle\langle n| \phi(0)|0\rangle \\
& =\left.\sum_{n}^{n}|n| \phi(0)|0\rangle\right|^{2} e^{-\left(E_{n}-E_{0}\right) t}=\sum_{n} A_{n} e^{\text {ensert complete set of }} \begin{array}{l}
\text { (discete end and continuous) }
\end{array}
\end{aligned}
$$

- extract A_{1} and $E_{1}-E_{0}$ as $t \rightarrow \infty$

$$
\text { (assuming }\langle 0| \phi(0)|0\rangle=0 \text { and }\langle 1| \phi(0)|0\rangle \neq 0 \text {) }
$$

Effective mass

- the "effective mass" is given by $m_{\text {eff }}(t)=\ln \left(\frac{C(t)}{C(t+1)}\right)$
- notice that (take $E_{0}=0$)

$$
\lim _{t \rightarrow \infty} m_{\text {eff }}(t)=\ln \left(\frac{A_{1} e^{-E_{1} t}+A_{2} e^{-E_{2} t}+\cdots}{A_{1} e^{-E_{1}(t+1)}+\cdots}\right) \rightarrow \ln e^{E_{1}}=E_{1}
$$

- effective mass tends to the actual mass (energy) asymptotically
- effective mass plot is convenient visual tool to see signal extraction
- seen as a plateau
- plateau sets in quickly for good operator
- excited-state contamination before plateau

Reducing contamination

- statistical noise generally increases with temporal separation t
- effective masses associated with correlation functions of simple local fields often do not reach a plateau before noise swamps the signal
- need better operators
- better operators have reduced couplings with higher-lying contaminating states
- recipe for making better operators
- crucial to construct operators using smeared fields
link variable smearing
quark field smearing
- spatially extended operators
- use large set of operators (variational coefficients)

Principal correlators

- extracting excited-state energies described in
- C. Michael, NPB 259, 58 (1985)
- Luscher and Wolff, NPB 339, 222 (1990)
- can be viewed as exploiting the variational method
- for a given $N \times N$ correlator matrix $C_{\alpha \beta}(t)=\left\langle 0 O_{\alpha}(t) O_{\beta}^{+}(0) \mid 0\right\rangle$ one defines the N principal correlators $\lambda_{\alpha}\left(t, t_{0}\right)$ as the eigenvalues of

$$
C\left(t_{0}\right)^{-1 / 2} C(t) C\left(t_{0}\right)^{-1 / 2}
$$

where t_{0} (the time defining the "metric") is small

- can show that $\lim _{t \rightarrow \infty} \lambda_{\alpha}\left(t, t_{0}\right)=e^{-\left(t-t_{0}\right) E_{\alpha}}\left(1+e^{-\Delta \Delta E_{\alpha}}\right)$
- N principal effective masses defined by $m_{\alpha}^{\text {eff }}(t)=\ln \left(\frac{\lambda_{\alpha}\left(t, t_{0}\right)}{\lambda_{\alpha}\left(t+1, t_{0}\right)}\right)$ now tend (plateau) to the N lowest-lying stationary-state energies

Unstable particles (resonances)

- our computations done in a periodic box
- momenta quantized
- discrete energy spectrum of stationary states \rightarrow single hadron, 2 hadron, ...

- scattering phase shifts \rightarrow resonance masses, widths (in principle) deduced from finite-box spectrum
- B. DeWitt, PR 103, 1565 (1956) (sphere)
- M. Luscher, NPB364, 237 (1991) (cube)
- more modest goal: "ferret" out resonances from scattering states
- must differentiate resonances from multi-hadron states
- avoided level crossings, different volume dependences
\square know masses of decay products \rightarrow placement and pattern of multi-particle states known
resonances show up as extra states with little volume dependence

Operator design issues

- must facilitate spin identification
- shun the usual method of operator construction which relies on cumbersome continuum space-time constructions
- focus on constructing operators which transform irreducibly under the symmetries of the lattice
- one eye on maximizing overlaps with states of interest
- other eye on minimizing number of quark-propagator sources
- use building blocks useful for baryons, mesons, multi-hadron operators

Three stage approach (PRD72:094506,2005)

concentrate on baryons at rest (zero momentum)
operators classified according to the irreps of O_{h}

$$
G_{1 g}, G_{1 u}, G_{2 g}, G_{2 u}, H_{g}, H_{u}
$$

(1) basic building blocks: smeared, covariant-displaced quark fields

$$
\left(\widetilde{D}_{j}^{(p)} \widetilde{\psi}(x)\right)_{\text {Aad }} \quad p \text {-link displacement }(j=0, \pm 1, \pm 2, \pm 3)
$$

- (2) construct elemental operators (translationally invariant)

$$
B^{F}(x)=\phi_{A B C}^{F} \varepsilon_{a b c}\left(\tilde{D}_{i}^{(p)} \tilde{\psi}(x)\right)_{A a \alpha}\left(\tilde{D}_{j}^{(p)} \tilde{\psi}(x)\right)_{B b \beta}\left(\tilde{D}_{k}^{(p)} \tilde{\psi}(x)\right)_{C c \gamma}
$$

- flavor structure from isospin, color structure from gauge invariance
- (3) group-theoretical projections onto irreps of O_{h}

$$
B_{i}^{\Lambda \lambda F}(t)=\frac{d_{\Lambda}}{g_{O_{h}^{D}}} \sum_{R \in O_{h}^{D}} D_{\lambda \lambda}^{(\Lambda)}(R)^{*} U_{R} B_{i}^{F}(t) U_{R}^{+}
$$

- wrote Grassmann package in Maple to do these calculations

Three-quark elemental operators

three-quark operator

$$
\Phi^{A B C}, i j k=\sum_{\vec{x}}(t) \varepsilon_{a b c}\left(\tilde{D}_{i}^{(p)} \tilde{\psi}(\vec{x}, t)\right)_{a c}^{A}\left(\tilde{D}_{j}^{(p)} \tilde{\psi}(\vec{x}, t)\right)_{b}^{B} \quad\left(\tilde{D}_{k}^{(p)} \tilde{\psi}(\vec{x}, t)\right)^{C}
$$

- covariant displacements

$$
\begin{aligned}
& \tilde{D}_{j}^{(p)}\left(x, x^{\prime}\right)=\tilde{U}_{j}(x) \tilde{U}_{j}(x+\hat{j}) \cdots \tilde{U}_{j}(x+(p-1) \hat{j}) \delta_{x^{\prime}, x+p \hat{j}} \quad(j= \pm 1, \pm 2, \pm 3) \\
& \tilde{D}_{0}^{(p)}\left(x, x^{\prime}\right)=\delta_{x^{\prime}, x}
\end{aligned}
$$

Baryon	Operator
Δ^{++}	$\Phi^{\text {uuu }}{ }_{\text {, }{ }_{\text {ilk }}}$
Σ^{+}	$\Phi^{\text {uuL }}$,jik
N^{+}	$\Phi^{\text {uud }}{ }_{\text {,jkk }}-\Phi^{\text {duu }}{ }_{\text {, } \mathrm{ijk}}$
Ξ^{0}	$\Phi^{\text {sul }}$,jik
Λ^{0}	
Ω^{-}	$\Phi_{\text {gis }, \text {,jk }}^{\text {sss }}$

Incorporating orbital and radial structure

- displacements of different lengths build up radial structure
- displacements in different directions build up orbital structure

- operator design minimizes number of sources for quark propagators
- useful for mesons, tetraquarks, pentaquarks even!
- can even incorporate hybrid meson operators

Enumerating the three-quark operators

- lots of operators (too many!)

	Δ^{++}, Ω^{-}	Σ^{+}, Ξ^{0}	N^{+}	Λ^{0}
Single-site	20	40	20	24
Singly-displaced	240	624	384	528
Doubly-displaced-I	192	572	384	576
Doubly-displaced-L	768	2304	1536	2304
Triply-displaced-T	768	2304	1536	2304
Triply-displaced-O	512	1536	1024	1536

Spin identification and other remarks

- spin identification possible by pattern matching

J	$n_{G_{1}}^{J}$	$n_{G_{2}}^{J}$	n_{H}^{J}
$\frac{1}{2}$	1	0	0
$\frac{3}{2}$	0	0	1
$\frac{5}{2}$	0	1	1
$\frac{7}{2}$	1	1	1
$\frac{9}{2}$	1	0	2
$\frac{11}{2}$	1	1	2
$\frac{13}{2}$	1	2	2
$\frac{15}{2}$	1	1	3
$\frac{17}{2}$	2	1	3

total numbers of operators assuming two different displacement lengths

Irrep	Δ, Ω	N	Σ, Ξ	Λ
$G_{1 g}$	221	443	664	656
$G_{1 u}$	221	443	664	656
$G_{2 g}$	188	376	564	556
$G_{2 u}$	188	376	564	556
H_{g}	418	809	1227	1209
H_{u}	418	809	1227	1209

- total numbers of operators is huge \rightarrow uncharted territory
- ultimately must face two-hadron scattering states

Single-site operators

choose Dirac-Pauli convention for γ-matrices

- 20 independent single-site Δ^{++}elemental operators:

$$
\Delta_{\alpha \beta \gamma}=\varepsilon_{a b c} \tilde{u}_{\alpha \alpha} \tilde{u}_{b \beta} \tilde{u}_{c \gamma}, \quad(\alpha \leq \beta \leq \gamma)
$$

- 20 independent single-site N^{+}elemental operators:

$$
N_{\alpha \beta \gamma}=\varepsilon^{a b c}\left(\tilde{u}_{a \alpha} \tilde{u}_{b \beta} \tilde{d}_{c \gamma}-\tilde{d}_{a \alpha} \tilde{u}_{b \beta} \tilde{u}_{c \gamma}\right), \quad(\alpha \leq \beta, \alpha<\gamma)
$$

- 40 independent single-site Σ^{+}elemental operators:

$$
\Sigma_{\alpha \beta \gamma}=\varepsilon_{a b c} \tilde{u}_{a \alpha} \tilde{u}_{b \beta} \tilde{s}_{c \gamma} \quad(\alpha \leq \beta)
$$

- 24 independent single-site Λ^{0} elemental operators:

$$
\Lambda_{\alpha \beta \gamma}=\varepsilon_{a b c}\left(\tilde{u}_{a \alpha} \tilde{d}_{b \beta} \tilde{s}_{c \gamma}-\tilde{d}_{a \alpha} \tilde{u}_{b \beta} \tilde{s}_{c \gamma}\right) \quad(\alpha<\beta)
$$

$\Delta++$ single-site operators

Irrep	Row	DP Operators
$G_{1 g}$	1	$\Delta_{144}-\Delta_{234}$
$G_{1 g}$	2	$-\Delta_{134}+\Delta_{233}$
G_{14}	1	$\Delta_{124}-\Delta_{223}$
G_{14}	2	$-\Delta_{114}+\Delta_{123}$
H_{g}	1	Δ_{222}
H_{g}	2	$-\sqrt{3} \Delta_{122}$
H_{g}	3	$\sqrt{3} \Delta_{112}$
H_{g}	4	$-\Delta_{111}$
H_{g}	1	$\sqrt{3} \Delta_{244}$
H_{g}	2	$-\Delta_{144}-2 \Delta_{234}$
H_{9}	3	$2 \Delta_{134}+\Delta_{233}$
H_{g}	4	$-\sqrt{3} \Delta_{133}$

Irrep	Row	DP Operators
H_{u}	1	$\sqrt{3} \Delta_{224}$
H_{u}	2	$-2 \Delta_{124}-\Delta_{223}$
H_{u}	3	$\Delta_{114}+2 \Delta_{123}$
H_{u}	4	$-\sqrt{3} \Delta_{113}$
H_{u}	1	Δ_{444}
H_{u}	2	$-\sqrt{3} \Delta_{344}$
H_{u}	3	$\sqrt{3} \Delta_{334}$
H_{u}	4	$-\Delta_{333}$

Single-site $N+$ operators

Irrep Row	DP Operators	
$G_{1 g}$	1	N_{122}
$G_{1 g}$	2	$-N_{112}$
$G_{1 g}$	1	$N_{144}-N_{243}$
$G_{1 g}$	2	$-N_{134}+N_{233}$
$G_{1 g}$	1	$N_{144}-2 N_{234}+N_{243}$
$G_{1 g}$	2	$N_{134}-2 N_{143}+N_{233}$
$G_{1 q}$	1	N_{142}
$G_{1 q}$	2	$-N_{132}$
$G_{1 \varepsilon}$	1	N_{344}
$G_{1 q}$	2	$-N_{334}$
G_{14}	1	$2 N_{124}-N_{142}-2 N_{223}$
$G_{1 \varepsilon}$	2	$-2 N_{114}+2 N_{123}-N_{132}$

Irrep Row	DP Operators	
H_{g}	1	$\sqrt{3} N_{244}$
H_{9}	2	$-N_{144}-N_{234}-N_{243}$
H_{g}	3	$N_{134}+N_{143}+N_{233}$
H_{9}	4	$-\sqrt{3} N_{133}$
H_{u}	1	$\sqrt{3} N_{224}$
H_{u}	2	$-2 N_{124}+N_{142}-N_{223}$
H_{u}	3	$N_{114}+2 N_{123}-N_{132}$
H_{u}	4	$-\sqrt{3} N_{113}$

Testing the three-quark operators

- Next step: smearing optimization and operator pruning
- optimize link-variable and quark-field smearings
- remove dynamically redundant operators
- remove ineffectual operators
- low statistics runs in quenched approx on small lattices

Quark- and gauge-field smearing

- smeared quark and gluon fields fields \rightarrow dramatically reduced coupling with short wavelength modes
- link-variable smearing (stout links PRD69, 054501 (2004))
- define $C_{\mu}(x)=\sum_{ \pm(v \neq \mu)} \rho_{\mu \nu} U_{\nu}(x) U_{\mu}(x+\hat{v}) U_{v}^{+}(x+\hat{\mu})$
- spatially isotropic $\quad \rho_{j k}=\rho, \quad \rho_{4 k}=\rho_{k 4}=0$

- exponentiate traceless Hermitian matrix

$$
\Omega_{\mu}=C_{\mu} U_{\mu}^{+} \quad Q_{\mu}=\frac{i}{2}\left(\Omega_{\mu}^{+}-\Omega_{\mu}\right)-\frac{i}{2 N} \operatorname{Tr}\left(\Omega_{\mu}^{+}-\Omega_{\mu}\right)
$$

- iterate

$$
U_{\mu}^{(n+1)}=\exp \left(i Q_{\mu}^{(n)}\right) U_{\mu}^{(n)}
$$

$$
U_{\mu} \rightarrow U_{\mu}^{(1)} \rightarrow \cdots \rightarrow U_{\mu}^{(n)} \stackrel{\mu}{=} \widetilde{U}_{\mu}
$$

- quark-field smearing (covariant Laplacian uses smeared gauge field)

$$
\tilde{\psi}(x)=\left(1+\frac{\sigma_{s}}{4 n_{\sigma}} \tilde{\Delta}^{2}\right)^{n_{\sigma}} \psi(x)
$$

Importance of smearing

${ }^{\circ}$ Nucleon $\mathrm{G}_{1 \mathrm{~g}}$ channel
effective masses of 3 selected operators
${ }^{\circ}$ noise reduction from link variable smearing, especially for displaced operators
${ }^{\circ}$ quark-field smearing reduces couplings to high-lying states

$$
\begin{array}{ll}
\sigma_{s}=4.0, & n_{\sigma}=32 \\
n_{\rho} \rho=2.5, & n_{\rho}=16
\end{array}
$$

${ }^{\circ}$ less noise in excited states using $\sigma_{s}=3.0$

Tuning the smearing

the effective mass at $t=4 a_{t}$ for three specific nucleon operators for different quark-field smearings (link smearing same as last slide)

Operator plethora $\left(\mathrm{G}_{1 \mathrm{~g}}\right.$ Nucleon $)$

G_{Ig} nucleon operators

G_{Ig} nucleon operators

G_{Ig} nucleon operators

$\mathrm{G}_{2 \mathrm{~g}}$ nucleon operators

H_{u} nucleon operators

Operator selection

Do we need all of these operators?

- If not, how many? How do we choose?
- over six months of experimentation led us to the following rules of thumb:
- noise is the enemy!
- prune first using intrinsic noise (diagonal correlators)
- prune next within operator types (single-site, singly-displaced, etc.) based on condition number of
- prune across all operators based on

$$
\hat{C}_{i j}(t)=\frac{C_{i j}(t)}{\sqrt{C_{i j}(t) C_{j j}(t)}}, \quad t=1
$$ condition number

- best to keep a variety of different types of operators, as long as condition numbers maintained
- low lying spectrum robust if noise minimized, good operator variety
- typically use 16 operators to get 8 lowest lying levels

Nucleon G_{Ig} effective masses

200 quenched configs, $12^{3} \times 48$ anisotropic Wilson lattice, $a_{s} \sim 0.1 \mathrm{fm}$, $\mathrm{a}_{\mathrm{s}} / \mathrm{a}_{\mathrm{t}} \sim 3, \mathrm{~m}_{\pi} \sim 700 \mathrm{MeV}$

- nucleon $\mathrm{G}_{1 \mathrm{~g}}$ channel
- green=fixed coefficients, red=principal

Nucleon H_{u} effective masses

- 200 quenched configs, $12^{3} \times 48$ anisotropic Wilson lattice, $a_{s} \sim 0.1 \mathrm{fm}$, $\mathrm{a}_{\mathrm{s}} / \mathrm{a}_{\mathrm{t}} \sim 3, \mathrm{~m}_{\pi} \sim 700 \mathrm{MeV}$
- nucleon H_{u} channel
- green=fixed coefficients, red=principal

Nucleon spectrum

- 200 quenched configs, $12^{3} \times 48$ anisotropic Wilson lattice, $\mathrm{a}_{\mathrm{s}} \sim 0.1 \mathrm{fm}$, $\mathrm{a}_{\mathrm{s}} / \mathrm{a}_{\mathrm{t}} \sim 3, \mathrm{~m}_{\pi} \sim 700 \mathrm{MeV}$

Delta spectrum

- 200 quenched configs, $12^{3} \times 48$ anisotropic Wilson lattice, $\mathrm{a}_{\mathrm{s}} \sim 0.1 \mathrm{fm}$, $\mathrm{a}_{\mathrm{s}} / \mathrm{a}_{\mathrm{t}} 3, \mathrm{~m}_{\pi} \sim 700 \mathrm{MeV}$

All-to-all stochastic quark propagators

consider a temporal correlator of a three-quark Σ (uus) baryon:

$$
\begin{aligned}
& \times\left\langle Q_{\text {acip; } ; \bar{a} \bar{\alpha}^{\prime} \bar{p}}^{(u)}\left(x, t+t_{0} ; \bar{x}, t_{0} \mid U\right) Q_{b \beta j p ; ; \bar{b} \bar{\beta}^{\prime} \overline{\bar{p}}}^{(u)}\left(x, t+t_{0} ; \bar{x}, t_{0} \mid U\right)\right. \\
& Q_{c \gamma k p ; c \bar{\gamma} \overline{\bar{p}}}^{(s)}\left(x, t+t_{0} ; \bar{x}, t_{0} \mid U\right)-Q_{\text {acip; } ; \overline{\beta^{\prime}} \cdot \bar{p}}^{(u)}\left(x, t+t_{0} ; \bar{x}, t_{0} \mid U\right) \\
& \left.Q_{b \beta \beta j p ; \bar{a} \bar{\alpha}^{\prime} \overline{\bar{p}}}^{(u)}\left(x, t+t_{0} ; \bar{x}, t_{0} \mid U\right) Q_{c \gamma k p ; \bar{c} \gamma^{\prime} \overline{\bar{p}}}^{(s)}\left(x, t+t_{0} ; \bar{x}, t_{0} \mid U\right)\right\rangle_{U}
\end{aligned}
$$

- above expression needs quark propagators from all spatial sites \bar{x} on time slice t_{0} to all spatial sites x on time slice $t+t_{0}$

All-to-all stochastic quark propagators (2)

- computing all elements of propagators exactly not feasible
- translational invariance can limit summation over source site to a single site for local operators
- cannot limit source to single site for multi-hadron operators
- disconnected diagrams (scalar mesons) will also need many-to-many quark propagators
- stochastic estimates of all quark propagator elements are needed!

Matrix inversion

quark propagator is just inverse of Dirac matrix M
noise vectors η satisfying $E\left(\eta_{i}\right)=0$ and $E\left(\eta_{i} \eta_{j}^{*}\right)=\delta_{i j}$ are useful for stochastic estimates of inverse of a matrix M

- Z_{4} noise is used $\{1, i,-1,-i\}$
- define $X(\eta)=M^{-1} \eta$ then

$$
E\left(X_{i} \eta_{j}^{*}\right)=E\left(\sum_{k} M_{i k}^{-1} \eta_{k} \eta_{j}^{*}\right)=\sum_{k} M_{i k}^{-1} E\left(\eta_{k} \eta_{j}^{*}\right)=\sum_{k} M_{i k}^{-1} \delta_{k j}=M_{i j}^{-1}
$$

- if can solve $M X^{(r)}=\eta^{(r)}$ for each of N_{R} noise vectors $\eta^{(r)}$ then we have a Monte Carlo estimate of all elements of M^{-1} :

$$
M_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} X_{i}^{(r)} \eta_{j}^{(r) *}
$$

- variances in above estimates usually unacceptably large
- introduce variance reduction using source dilution

Source dilution for single matrix inverse

- dilution introduces a complete set of projections:

$$
P^{(a)} P^{(b)}=\delta^{a b} P^{(a)}, \quad \sum_{a} P^{(a)}=1, \quad P^{(a) \dagger}=P^{(a)}
$$

- observe that

$$
\begin{aligned}
& M_{i j}^{-1}=M_{i k}^{-1} \delta_{k j}=\sum_{a} M_{i k}^{-1} P_{k j}^{(a)}=\sum_{a} M_{i k}^{-1} P_{k k^{\prime}}^{(a)} \delta_{k j^{\prime}} P_{j^{\prime} j}^{(a)} \\
& =\sum_{a} M_{i k}^{-1} P_{k k^{\prime}}^{(a)} E\left(\eta_{k^{\prime}} \eta_{j^{\prime}}^{*}\right) P_{j^{\prime} j}^{(a)}=\sum_{a} M_{i k}^{-1} E\left(P_{k k^{\prime}}^{(a)} \eta_{k^{\prime}} \eta_{j^{\prime}}^{*} P_{j^{\prime} j}^{(a)}\right)
\end{aligned}
$$

- define $\eta_{k}^{[a]}=P_{k k^{\prime}}^{(a)} \eta_{k^{\prime}}, \quad \eta_{j}^{[a)^{*}}=\eta_{j^{*}}^{*} P_{j j^{(a)}}^{(a)} \quad X_{k}^{[a]}=M_{k j}^{-1} \eta_{j}^{[a]}$
so that

$$
M_{i j}^{-1}=\sum_{a} E\left(X_{i}^{[a]} \eta_{j}^{[a]^{\star}}\right)
$$

- Monte Carlo estimate is now

$$
M_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} \sum_{a} X_{i}^{(r)[a]} \eta_{j}^{(r)[a]^{*}}
$$

- $\sum_{a} \eta_{i}^{[a]} \eta_{j}^{[a]^{*}}$ has same expected value as $\eta_{i} \eta_{j}^{*}$, but reduced variance (statistical zeros \rightarrow exact)

Dilution for products of matrix inverses

- in baryon correlators, need estimates of $M_{i j}^{-1} M_{k l}^{-1} M_{m n}^{-1}$
- introduce independent noise vectors for each quark line for unbiased estimate

$$
M_{i j}^{-1} M_{k l}^{-1} M_{m n}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} \sum_{a b c} X_{i}^{(1, r)[a]} \eta_{j}^{(1, r)[a]^{*}} X_{k}^{(2, r)[b]} \eta_{l}^{(2, r)[b] *} X_{m}^{(3, r)[c]} \eta_{n}^{(3, r)[c] *}
$$

- take average of permutations of quark line indices 123 for increased statistics

Source-sink factorization

- baryon correlator has form

$$
C_{\bar{\Pi}}=C_{i j}^{(l)} C_{i j k}^{(\bar{I})^{*}} Q_{i \bar{i}}^{A} Q_{\bar{j}}^{B} Q_{k \bar{k}}^{C}
$$

- stochastic estimates with dilution

$$
\begin{aligned}
C_{\pi \bar{T}} \approx & \frac{1}{N_{R}} \sum_{r} \sum_{d_{A} d_{B} d_{C}} c_{i j k}^{(l)} c_{\overline{j T k}}^{(\bar{T}) *}\left(\varphi_{i}^{(A r)\left[d_{A}\right]} \eta_{\bar{i}}^{(A r)\left[d_{A}\right]^{*}}\right) \\
& \times\left(\varphi_{j}^{(B r)\left[d_{B}\right]} \eta_{\bar{j}}^{\left.(B r)\left[d_{B}\right]^{*}\right)}\right)\left(\varphi_{k}^{(C r)\left[d_{C}\right]} \eta_{\bar{k}}^{(C r)\left[d_{C}\right]^{*}}\right)
\end{aligned}
$$

- define

$$
\begin{aligned}
& \Gamma_{l}^{(r)\left[d_{A} d_{B} d_{C}\right]}=c_{i j k}^{(l)} \varphi_{i}^{(A r)\left[d_{A}\right]} \varphi_{j}^{(B r)\left[d_{B}\right]} \varphi_{k}^{(C r)\left[d_{C}\right]} \\
& \Omega_{l}^{(r)\left[d_{A} d_{B} d_{C}\right]}=c_{i j k}^{(l)} \eta_{i}^{(A r)\left[d_{A}\right]} \eta_{j}^{(B r)\left[d_{B}\right]} \eta_{k}^{(C r)\left[d_{C}\right]}
\end{aligned}
$$

- correlator becomes dot product of source vector with sink vector

$$
C_{\pi} \approx \frac{1}{N_{R}} \sum_{r} \sum_{d_{A} d_{B} d_{C} d_{l}} \Gamma_{l}^{(r)\left[d_{A} d_{B} d_{C}\right]} \Omega_{\bar{T}}^{(r)\left[d_{A} d_{B} d_{C}\right]^{*}}
$$

- store $A B C$ permutations to handle Wick orderings

Dilution schemes for spectroscopy

- Time dilution (particularly effective)

$$
P_{a \alpha ; b \beta}^{(B)}\left(\vec{x}, t ; \vec{y}, t^{\prime}\right)=\delta_{a b} \delta_{\alpha \beta} \delta(\vec{x}, \vec{y}) \delta_{B t} \delta_{B t^{\prime}}, \quad B=0,1, \ldots, N_{t}-1
$$

- Spin dilution

$$
P_{a \alpha a ; b \beta}^{(B)}\left(\vec{x}, t ; \vec{y}, t^{\prime}\right)=\delta_{a b} \delta_{B \alpha} \delta_{B \beta} \delta(\vec{x}, \vec{y}) \delta_{t^{\prime}}, \quad B=0,1,2,3
$$

- Color dilution

$$
P_{a c ; b \beta}^{(B)}\left(\vec{x}, t ; \vec{y}, t^{\prime}\right)=\delta_{B a} \delta_{B b} \delta_{\alpha \beta} \delta(\vec{x}, \vec{y}) \delta_{t^{\prime}}, \quad B=0,1,2
$$

- Spatial dilutions?

Dilution tests

- 20 quenched configs, $12^{3} \times 48$ anisotropic Wilson lattice, $\mathrm{a}_{\mathrm{s}} \sim 0.1 \mathrm{fm}$, $\mathrm{a}_{\mathrm{s}} / \mathrm{a}_{\mathrm{t}} \sim 3, \mathrm{~m}_{\pi} \sim 700 \mathrm{MeV}$ (PRELIMINARY)
- nucleon $\mathrm{G}_{1 \mathrm{~g}}$ channel

Time dilution Time + spin dilution

Dilution tests (2)

- 20 quenched configs, $12^{3} \times 48$ anisotropic Wilson lattice, $\mathrm{a}_{\mathrm{s}} \sim 0.1 \mathrm{fm}$, $\mathrm{a}_{\mathrm{s}} / \mathrm{a}_{\mathrm{i}} \sim 3, \mathrm{~m}_{\pi} \sim 700 \mathrm{MeV}$ (PRELIMINARY)
- nucleon $\mathrm{G}_{1 \mathrm{~g}}$ channel (lowest three principal effective masses)

Time + spin dilution

Point-to-all

Future work on dillutions

- Much work to do exploring stochastic quark propagators with dilutions
- different dilution schemes
- number of noise vectors
- low-lying eigenmodes
- dependence on lattice spacing, quark masses
- Software effort must be completed first! (soon!!)
- Study three-quark baryon and quark-antiquark meson operators first
- Multi-hadron operators important milestone
- Disconnected diagrams

Configuration generation

- Significant time on USQCD (DOE) and NSF computing resources
- Anisotropic clover fermion action (with stout links) and anisotropic improved gauge action
- Tunings of couplings, aspect ratio, lattice spacing in progress
- Anisotropic Wilson action configurations generated during clover tuning
- Three lattice spacings: $a=0.125 \mathrm{fm}, 0.10 \mathrm{fm}, 0.08 \mathrm{fm}$
- Three volumes: $V=(3.2 \mathrm{fm})^{4},(4.0 \mathrm{fm})^{4},(5.0 \mathrm{fm})^{4}$
- $2+1$ flavors, $m_{\pi} \sim 350 \mathrm{MeV}, 220 \mathrm{MeV}, 180 \mathrm{MeV}$
- USQCD Chroma software suite

Summary

outlined ongoing efforts of LHPC to extract baryon spectrum using Monte Carlo methods on a space-time lattice

- mesons (and hybrids), tetraquarks, ...to be studied as well
- emphasized need for correlation matrices to extract spectrum
- spin identification must be addressed
- as light-quark mass decreases, inclusion of multi-hadron operators will become important
- very challenging calculations
- ...to be continued

Review of exotics (briefly)

- Gluonic excitations
- Exotic quantum numbers
- Results from 2003 and earlier
- Focus on three new studies
- Dudek, Edwards, Mathur, Richards hep-lat/0611006
- Hedditch et al., Phys.Rev.D72, 114507 (2005)
- McNeile et al., Phys.Rev.D73, 074506 (2006)

Gluonic excitations (new form of matter)

- QCD suggests existence of states in which gluon field is excited
- glueballs (excited glue)
- hybrid mesons ($q \bar{q}+$ excited glue)
- hybrid baryons ($q 9 q+$ excited glue)
- such states not well understood
- quark model fails
- perturbative methods fail
- lack of understanding makes identification difficult!
- confront gluon field behavior
- bags, strings, ...
- clues to confinement

Constituent quark model

- much of our understanding of hadron formation comes from the constituent quark model
- motivated by QCD
- valence quarks interacting via Coulomb + linear potential
- gluons: source of the potential, dynamics ignored

Quark model (continued)

- most of observed low-lying hadron spectrum described reasonably well by quark model
- agreement is amazing given the crudeness of the model
- mesons: only certain $J^{\text {PC }}$ allowed:
- $0^{+-}, 0^{--}, 1^{-+}, 2^{+-}, 3^{-+}, 4^{+-}, \ldots$ forbidden

$$
\begin{array}{ll}
P=(-1)^{L+1} & L=0,1,2, \ldots \\
C=(-1)^{L+S} & S=0,1
\end{array}
$$

- experimental results now need input beyond the quark model
- over-abundance of states
a forbidden 1^{-+}states

Heavy-quark hybrid mesons

- more amenable to theoretical treatment than light-quark hybrids
- early WOrk: Hasenfratz, Horgan, Kuti, Richard (1980), Michael, Griffiths, Rakow (1983)
- possible treatment like diatomic molecule (Born-Oppenheimer)
- slow heavy quarks \longleftrightarrow nuclei
a fast gluon field \longleftrightarrow electrons (and light quarks)
- gluons provide adiabatic potentials $V_{\mathrm{QQ}}(r)$
a gluons fully relativistic, interacting
- potentials computed in lattice simulations
- nonrelativistic quark motion described in leading
 order by solving Schrodinger equation for each $V_{Q \bar{Q}}(r)$

$$
\left\{\frac{p^{2}}{2 \mu}+V_{Q \bar{Q}}(r)\right\} \psi_{Q \bar{Q}}(r)=E \psi_{Q \bar{Q}}(r)
$$

- conventional mesons from Σ_{g}^{+}; hybrids from $\Pi_{u}, \Sigma_{u}^{-}, \ldots$

Excitations of static quark potential

- gluon field in presence of static quark-antiquark pair can be excited
- classification of states: (notation from molecular physics)
- magnitude of glue spin
 projected onto molecular axis

$$
\begin{aligned}
\Lambda & =0,1,2, \ldots \\
& =\Sigma, \Pi, \Delta, \ldots
\end{aligned}
$$

\square charge conjugation + parity about midpoint

$$
\begin{aligned}
\eta & =g(\text { even }) \\
& =u(\text { odd })
\end{aligned}
$$

- chirality (reflections in plane containing axis) Σ^{+}, Σ^{-}
Π, Δ, \ldots doubly degenerate (Λ doubling)

Juge, Kuti, Morningstar, PRL 90, 161601 (2003)

Leading Born-Oppenheimer

- replace covariant derivative \vec{D}^{2} by $\vec{\nabla}^{2} \rightarrow$ neglects retardation
- neglect quark spin effects
- solve radial Schrodinger equation

$$
\frac{-1}{2 \mu} \frac{d^{2} u(r)}{d r^{2}}+\left\{\frac{\left\langle L_{q q}^{2}\right\rangle}{2 \mu r^{2}}+V_{q q}(r)\right\} u(r)=E u(r)
$$

- angular momentum

$$
\vec{J}=\vec{L}+\vec{S} \quad \vec{S}=\vec{S}_{q}+\vec{S}_{q} \quad \vec{L}=\vec{L}_{q q}+\vec{J}_{q}
$$

- in LBO, L and S are good quantum numbers
- centrifugal term

$$
\left\langle\vec{L}_{q q}^{2}\right\rangle=L(L+1)-2 \Lambda^{2}+\left\langle\vec{J}_{g}^{2}\right\rangle
$$

$$
\begin{aligned}
\left\langle\vec{J}_{g}^{2}\right\rangle & =0 \\
& =2 \quad\left(\Sigma_{g}^{+}\right) \\
& \left(\Pi_{u}, \Sigma_{u}^{-}\right)
\end{aligned}
$$

$$
|L S J M ; \Lambda \eta\rangle+\varepsilon|L S J M ;-\Lambda \eta\rangle
$$

- η is $\mathrm{CP}, \varepsilon= \pm 1$ for $\Lambda \geq 1, \varepsilon= \pm 1$ for $\Sigma^{ \pm}$
- LBO allowed $J^{P C} \rightarrow P=\varepsilon(-1)^{L+\Lambda+1}, \quad C=\eta \varepsilon(-1)^{L+S+\Lambda}$

Leading Born-Oppenheimer spectrum

- results obtained (in absence of light quark loops)
- good agreement with experiment below $\mathrm{B} \overline{\mathrm{B}}$ threshold
- plethora of hybrid states predicted (caution! quark loops)
- but is a Born-Oppenheimer treatment valid?

LBO degeneracies:

$$
\begin{array}{ll}
\Sigma_{g}^{+}(S): & 0^{-+}, 1^{--} \\
\Sigma_{g}^{+}(P): & 0^{++}, 1^{++}, 2^{++}, 1^{+-} \\
\Pi_{u}(P): & 0^{-+}, 0^{+-}, 1^{++}, 1^{--}, \\
& 1^{+-}, 1^{-+}, 2^{+-}, 2^{-+}
\end{array}
$$

Juge, Kuti, Morningstar, Phys Rev Lett 82, 4400 (1999)

Charmonium LBO

- same calculation, but for charmonium

Testing LBO

- test LBO by comparison of spectrum with NRQCD simulations
- include retardation effects, but no quark spin, no \vec{p}^{4}, no light quarks
\square allow possible mixings between adiabatic potentials
- dramatic evidence of validity of LBO
- level splittings agree to 10% for 2 conventional mesons, 4 hybrids

$$
\begin{aligned}
H_{1,} H_{1}^{\prime} & =1^{--}, 0^{-+}, 1^{1+}, 2^{-+} \\
H_{2} & =1^{++}, 0^{+-}, 1^{+-}, 2^{+-} \\
H_{3} & =0^{++}, 1^{+-}
\end{aligned}
$$

lowest hybrid $1.49(2)(5) \mathrm{GeV}$ above 1 S

Bottomonium hybrids

- calculation of bottomonium hybrids in 2002 confirmed earlier results
\square quenched, several lattice spacings so $a \rightarrow 0$ limit taken
- improved anisotropic gluon and fermion (clover) actions
- good agreement with Born-Oppenheimer (but errors large)

Liao, Manke, PRD65, 074508 (2002)

Charmonium hybrids

- determination of some charmonium hybrids in 2002
- quenched, several lattice spacings for continuum limit
- improved, anisotropic gluon and fermion (clover) actions
- results suggest significant (but not large) corrections from LBO

Liao, Manke, hep-lat/0210030

Light-quark hybrids

determinations of exotic $1^{1^{+}}$hybrid meson from 2003 and earlier

- improved staggered fermions (lighter quark masses)
- quenched and unquenched, Wilson gluon action
- $a \approx 0.09 \mathrm{fm}$

MILC, hep-lat/0301024

- lightest mass still above experiment
$N_{f}=3, \quad m_{u}=m_{d}=m_{s}$
(around strange quark mass)

$$
m_{u}=m_{d}=0.4 m_{s}
$$

quenched continuum limit

Recent light hybrid 1^{-+}meson study

- Hedditch et al., Phys.Rev.D72, 114507 (2005)
- quenched isotropic $20^{3} \times 40$ lattice, FLIC fermions, improved gauge
- large errors, still not definitive

Light hybrid meson decay widths

- McNeile et al. (UKQCD) Phys.Rev. D73, 074506 (2006)
- $N_{f}=2$ dynamical clover fermions
- $\mathrm{m}_{\pi} \mathrm{r}_{0}=1.47$ and 1.29 (rather heavy)
- found hybrid 1^{+}mass $2.2(2) \mathrm{GeV}$
- partial width to πb_{1} of $400(120) \mathrm{MeV}$ and to πf_{1} of $90(6) \mathrm{MeV}$
- some evidence of coupling strength decrease as quark mass decreases

Charmonium exotics

- Dudek, Edwards, Mathur, Richards hep-lat/0611006
- quenched $12^{3} \times 48$ anisotropic lattice $a=0.1 \mathrm{fm}, a_{s} / a_{t}=3$
- 1^{-+}mass around 4.2 GeV
- lower than prior Manke study... but better effective mass
- signal for 0^{+-}and 2^{+-}exotics obtained ($\chi^{++}, h+-, \psi--, \eta-+$)

