#### Form factors for the nucleon- $\Delta$ system

#### T. Korzec<sup>1</sup> in collaboration with: C. Alexandrou<sup>1</sup>, G. Koutsou<sup>1</sup>, T. Leontiou, J.W. Negele<sup>2</sup> and A. Tsapalis<sup>3</sup>

<sup>1</sup> University of Cyprus

<sup>2</sup> Massachusetts Institute of Technology

<sup>3</sup> University of Athens





Workshop: 'Hadron physics on the lattice'



# Outline

#### Motivation

- 2 Definition of the form factors
- 3 Lattice formulation
- 4 Results: Electromagnetic form factors of the  $\Delta$  baryon
- 5 Results: Axial nucleon and nucleon to  $\Delta$  form factors
- Tests of the Goldberger-Treiman relations

#### 7 Conclusions

- Form factors provide crucial information about hadrons
  - size
  - magnetization
  - deformation
- Many form factors accessible experimentally
- Phenomenological models

Lattice QCD provides a tool to calculate them from first principles

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

# Matrix elements

We are interested in QCD matrix elements

 $\langle h'(p',s')|X|h(p,s)\rangle$ 



#### where

- h'(p', s'), h(p, s) are hadron states with initial (final) momentum p(p') and spin s(s')
  - nucleon
  - A-baryon
- X is a current or density
  - Electromagnetic current  $V_{\mu}(x) = \frac{2}{3}\bar{u}(x)\gamma_{\mu}u(x) \frac{1}{3}\bar{d}(x)\gamma_{\mu}d(x)$
  - Axial current  $A^a_{\mu}(\mathbf{x}) = \bar{\psi}(\mathbf{x})\gamma_{\mu}\gamma_5 \frac{\tau^a}{2}\psi(\mathbf{x})$
  - Pseudoscalar density  $P^{a}(x) = \overline{\psi}(x)\gamma_{5}\frac{\tau^{a}}{2}\psi(x)$

#### Electromagnetic nucleon form factors

The electromagnetic matrix element of the nucleon can be expressed in terms of two form factors.

$$\langle N(p',s')|V_{\mu}(0)|N(p,s)\rangle = \sqrt{\frac{m_{N}^{2}}{E_{N(\vec{p}')}E_{N(\vec{p})}}} \overline{u}(p',s')\mathcal{O}_{\mu}u(p,s)$$

$$\mathcal{O}_{\mu} = \gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{N}}F_{2}(q^{2})$$

 $F_1$ ,  $F_2$  are the Dirac form factors. q = p' - p is the momentum transfer

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{(2m_N)^2}F_2(q^2)$$
  

$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$

 $G_E$ ,  $G_M$  are the electric and magnetic Sachs form factors.

The axial current matrix element of the nucleon can be expressed in terms of the form factors  $G_A$  and  $G_p$ .

$$\begin{array}{lll} \langle N(p',s')|A^{3}_{\mu}(0)|N(p,s)\rangle & = & i\sqrt{\frac{m^{2}_{N}}{E_{N(\vec{p}')}E_{N(\vec{p})}}}\bar{u}(p',s')\mathcal{O}_{\mu}u(p,s) \\ \\ \mathcal{O}_{\mu} & = & \left[\gamma_{\mu}\gamma_{5}G_{A}(q^{2})+\frac{q^{\mu}}{2m_{N}}G_{p}(q^{2})\right]\frac{\tau^{3}}{2} \end{array}$$

#### Nucleon pseudoscalar matrix element

The pseudoscalar matrix element defines the form factor  $G_{\pi NN}$ 

$$\langle N(p',s')|P^{3}(0)|N(p,s)\rangle = \frac{i}{2m_{q}}\sqrt{\frac{m_{N}^{2}}{E_{N(\vec{p}')}E_{N(\vec{p})}}}\bar{u}(p',s')\mathcal{O}_{\mu}u(p,s)$$

$$\mathcal{O}_{\mu} = \gamma_{5}\frac{f_{\pi}m_{\pi}^{2}}{m_{\pi}^{2}-q^{2}}G_{\pi NN}(q^{2})$$

- *m<sub>q</sub>* renormalized quark mass
- *m*<sub>π</sub> pion mass
- $f_{\pi}$  pion decay constant

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

## The $N \rightarrow \Delta$ transition

When one of the hadrons is a spin- $\frac{3}{2}$  particle

$$\langle \Delta(p',s')|X|N(p,s)\rangle = i \sqrt{\frac{m_{\Delta}m_{N}}{E_{\Delta(\vec{p}')}E_{N(\vec{p})}}} \bar{u}_{\tau}(p',s')\mathcal{O}^{\tau(\mu)}u(p,s)$$

- $u_{\tau}(p, s)$  is a Schwinger-Rarita spinor
  - vector-spinor
  - each vector component satisfies the Dirac equation
  - in addition auxiliary conditions
    - $\gamma_{\mu}u^{\mu}(p,s)=0$
    - $p_{\mu}u^{\mu}(p,s)=0$

Form factors in  $\mathcal{O}^{\tau(\mu)}$ :

• Axial current matrix element:  $C_3^A$ ,  $C_4^A$ ,  $C_5^A$ ,  $C_6^A$ 

[L.S. Adler, Ann. Phys. 50, 189 (1968)] Dominant:  $C_5^A$ ,  $C_6^A$  correspond to  $G_A$ ,  $G_p$ 

Pseudoscalar matrix element: G<sub>πNΔ</sub>

イロト イポト イヨト イヨト

#### Electromagnetic form factors of the $\Delta$

The Electromagnetic matrix element can be decomposed in terms of *four* independent vertex-function coefficients  $a_1$ ,  $a_2$ ,  $c_1$ ,  $c_2$ 

$$\langle \Delta^+(p_f,s_f) | V^{\mu} | \Delta^+(p_i,s_i) 
angle = \sqrt{rac{m_{\Delta}^2}{E_{\Delta(ec p_f)}E_{\Delta(ec p_i)}}} \, ar u_{\sigma}(p_f,s_f) \, \mathcal{O}^{\sigma\mu au} \, u_{ au}(p_i,s_i)$$

with (Euclidean notation)

$$\mathcal{O}^{\sigma\mu\tau} = -\delta_{\sigma\tau} \left[ a_1 \gamma^{\mu} - i \frac{a_2}{2m_{\Delta}} P^{\mu} \right] \\ + \frac{q^{\sigma} q^{\tau}}{4m_{\Delta}^2} \left[ c_1 \gamma^{\mu} - i \frac{c_2}{2m_{\Delta}} P^{\mu} \right]$$

Matrix element can also be expressed in terms of multipole form factors  $G_{e0}$ ,  $G_{e2}$ ,  $G_{m1}$ ,  $G_{m3}$ . The linear relation between the two formulations is known [Leinweber, Nozawa Phys. Rev. D42, 3567 (1990)]

#### Lattice techniques: Interpolating fields

We need to excite states  $\chi|\Omega\rangle$  that have an overlap with the desired baryon ground states

$$egin{array}{lll} \langle \Omega | \chi^{N}(0) | {\cal N}({m p},{m s}) 
angle &=& Z^{N} u({m p},{m s}) \ \langle \Omega | \chi^{\Delta}_{\sigma}(0) | \Delta({m p},{m s}) 
angle &=& Z^{\Delta} u_{\sigma}({m p},{m s}) \end{array}$$

proton:

$$\chi^{P}_{\alpha}(x) = \epsilon^{abc} (\mathbf{u}^{a\top}(x) \mathcal{C}\gamma_5 \mathbf{d}^b(x)) \mathbf{u}^{c}_{\alpha}(x)$$

 $\Delta^+$  baryon:

$$\chi_{\sigma\alpha}^{\Delta^+}(x) = \frac{1}{\sqrt{3}} \epsilon^{abc} \Big[ 2(\mathbf{u}^{a\top}(x) \mathcal{C} \gamma_{\sigma} \mathbf{d}^b(x)) \mathbf{u}_{\alpha}^c(x) \\ + (\mathbf{u}^{a\top}(x) \mathcal{C} \gamma_{\sigma} \mathbf{u}^b(x)) \mathbf{d}_{\alpha}^c(x) \Big]$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Gauge invariant Gaussian smearing:

$$\begin{aligned} \mathbf{d}_{\beta}(t,\vec{x}) &= \sum_{\vec{x}\vec{y}} [\mathbbm{1} + \alpha H(\vec{x},\vec{y})]^{n} d_{\beta}(t,\vec{y}) \\ H(\vec{x},\vec{y};U(t)) &= \sum_{\mu=1}^{3} \left( U_{\mu}(\vec{x},t) \delta_{\vec{x},\vec{y}-\hat{\mu}} + U_{\mu}^{\dagger}(\vec{x}-\hat{\mu},t) \delta_{\vec{x},\vec{y}+\hat{\mu}} \right) \end{aligned}$$

- Better overlap with the baryon ground-state
  - $\rightarrow$  Ground state dominance after only 2-3 time slices
- But: increased statistical noise
  - $\rightarrow$  apply HYP or APE smearing to the gauge-field entering  $H(\vec{x}, \vec{y})$

# Effect of smearing

- Nucleon effective mass
- Smearing is crucial for the calculation of form factors



Measure two-point and three-point functions (here: EM  $\Delta \rightarrow \Delta$ )

$$\Gamma_{\sigma\tau}(T^{\nu}, \vec{p}, t_{f} - t_{i}) = \int d^{3}x_{f} e^{i\vec{x}_{f}\cdot\vec{p}} T^{\nu}_{\alpha'\alpha} \langle \chi_{\sigma\alpha}(t_{f}, \vec{x}_{f})\bar{\chi}_{\tau\alpha'}(t_{i}, \vec{x}_{i}) \rangle$$

$$\Gamma^{\mu}_{\sigma\tau}(T^{\nu}, \vec{q}, t) = \int d^{3}x \int d^{3}x_{f} e^{i\vec{x}_{f}\cdot\vec{p}_{f} - i\vec{x}\cdot\vec{q}} T^{\nu}_{\alpha'\alpha} \langle \chi_{\sigma\alpha}(t_{f}, \vec{x}_{f}) V^{\mu}(t, \vec{x})\bar{\chi}_{\tau\alpha'}(t_{i}, \vec{x}_{i}) \rangle$$

we use 
$$\mathcal{T}^k = rac{1}{2} \left( egin{array}{cc} \sigma^{(k)} & 0 \\ 0 & 0 \end{array} 
ight)$$
 and  $\mathcal{T}^4 = rac{1}{2} \left( egin{array}{cc} \mathbbm{1} & 0 \\ 0 & 0 \end{array} 
ight)$ 

T. Korzec (University of Cyprus)

# Numerical evaluation of correlation functions

• Starting point: Euclidean pathintegral formulation of QCD

$$\frac{1}{Z}\int DU\,D\psi\,D\bar{\psi}\,\mathcal{O}[U,\bar{\psi},\psi]\,e^{-\bar{\psi}D\psi}\,e^{-S_G}$$

Integrate out the fermionic fields

$$\frac{1}{Z}\int DU \mathcal{O}[U, D^{-1}] \det[D] e^{-S_{G}}$$

- Estimate integrals over gauge-field by Monte-Carlo methods
  - quenched approximation:  $det[D] \rightarrow 1$

Can't calculate the full inverse  $D^{-1}{}^{ab}_{\alpha\beta}(x,y)$ With fixed  $y, b, \beta$  one can obtain  $D^{-1}$  for all  $x, a, \alpha$  by solving the linear system  $D^{a'a}_{\alpha'\alpha}(x', x)D^{-1}{}^{ab}_{\alpha\beta}(x, y) = \delta_{a',b}\delta_{\alpha',\beta}\delta_{x',y}$  $\Rightarrow 12$  "inversions" for all Dirac and color components

# **Disconnected diagrams**

Wick contractions for 3-point function: two different types of contributions



disconnected diagram contains factor  $\sum_{\vec{x}} \operatorname{tr}^{s,f}[D^{-1}(x,x)\Gamma] \rightarrow$  vanishes for

• 
$$\Gamma = \gamma_{\mu}\gamma_{5}\tau^{a}$$
 axial current

- $\Gamma = \gamma_5 \tau^a$  pseudoscalar density
- $\Gamma = \gamma_{\mu} \tau^3$  isovector current

We calculate  $V_{\mu}^{iv}$  or  $V_{\mu}^{connected}$ 

note: we use the (symmetrized) lattice conserved current  $\Rightarrow Z_V = 1$ .

# Sequential inversion through the sink

#### Our setup

- Source at  $t_i = 0$ ,  $\vec{x} = 0$
- Sink at  $t = t_f$ ,  $\vec{p}_f = 0$
- Operator X at t,  $\vec{q} = -\vec{p}_i$
- No new inversions for different operator X(t, q)
- But: new inversions necessary for different interpolating fields



# Sequential inversion through the sink

#### Our setup

- Source at  $t_i = 0$ ,  $\vec{x} = 0$
- Sink at  $t = t_f$ ,  $\vec{p}_f = 0$
- Operator X at t,  $\vec{q} = -\vec{p}_i$
- No new inversions for different operator X(t, q)
- But: new inversions necessary for different interpolating fields





イロト イヨト イヨト イヨト

# Sequential inversion through the sink

#### Our setup

- Source at  $t_i = 0$ ,  $\vec{x} = 0$
- Sink at  $t = t_f$ ,  $\vec{p}_f = 0$
- Operator X at t,  $\vec{q} = -\vec{p}_i$
- No new inversions for different operator X(t, q)
- But: new inversions necessary for different interpolating fields



(I)

#### For large Euclidean time separations:

Two-point function (here  $\Delta \rightarrow \Delta$  electromagnetic):

$$\begin{split} \Gamma_{\sigma\tau} &\to e^{-\mathcal{E}_{\Delta(\vec{p})}(t_{\tau}-t_{i})} |Z|^{2} c(\vec{p}) \operatorname{tr}[T \wedge_{\sigma\tau}] \\ \Lambda_{\sigma\tau} &= \sum_{s} u_{\sigma}(p,s) \bar{u}_{\tau}(p,s) \\ &= -\frac{-i\not p + m_{\Delta}}{2m_{\Delta}} \left[ \delta_{\sigma\tau} - \frac{\gamma_{\sigma}\gamma_{\tau}}{3} + \frac{2p_{\sigma}p_{\tau}}{3m_{\Delta}^{2}} - i\frac{p_{\sigma}\gamma_{\tau} - p_{\tau}\gamma_{\sigma}}{3m_{\Delta}} \right] \end{split}$$

Three-point function:

$$\begin{split} \Gamma^{\mu}_{\sigma \tau} &\to e^{-m_{\Delta}(t_{f}-t)} e^{-E_{\Delta(\vec{p}_{i})}(t-t_{i})} |Z|^{2} c(\vec{p}_{i}) c(\vec{p}_{f}) \sqrt{\frac{m_{\Delta}^{2}}{E_{\Delta(\vec{p}_{i})} E_{\Delta(\vec{p}_{i})}}} G^{\mu}_{\sigma \tau} \\ G^{\mu}_{\sigma \tau} &\equiv \operatorname{tr} \left[ T \Lambda_{\sigma \sigma'}(p_{f}) \mathcal{O}^{\sigma' \mu \tau'} \Lambda_{\tau' \tau}(p_{i}) \right] \end{split}$$

T. Korzec (University of Cyprus)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

#### **Reduced ratios**

#### Form a ratio in which Z and the time dependence cancel

$$R_{\sigma \tau}^{\ \mu} = \frac{\Gamma_{\sigma \tau}^{\ \mu}(T, \vec{q}, t)}{\Gamma_{kk}(T^4, 0, t_f)} \sqrt{\frac{\Gamma_{kk}(T^4, \vec{p}_i, t_f - t)\Gamma_{kk}(T^4, 0, t)\Gamma_{kk}(T^4, 0, t_f)}{\Gamma_{kk}(T^4, 0, t_f - t)\Gamma_{kk}(T^4, \vec{p}_i, t)\Gamma_{kk}(T^4, \vec{p}_i, t_f)}} \to \Pi_{\sigma \tau}^{\ \mu}(T, \vec{q})$$



T. Korzec (University of Cyprus)

## Suitable combinations

Example: to isolate  $G_{m1}$  one can calculate

$$\Pi_{1\,2}^{\ \mu}(T^4, \vec{q}) = f(q^2) \delta_{3,\mu}(q_2 - q_1) \mathbf{G}_{m1}$$

⇒ no contributions from  $\mu \neq 3$  or  $\vec{q} \parallel \hat{z}$  data ⇒ It's better to calculate

 $\sum_{j,k,l=1}^{3} \epsilon_{jkl} \prod_{j=k}^{\mu} (T^{4}, \vec{q}) = f(q^{2}) \left[ \delta_{1,\mu}(q_{3} - q_{2}) + \delta_{2,\mu}(q_{1} - q_{3}) + \delta_{3,\mu}(q_{2} - q_{1}) \right] \mathbf{G}_{m1}$ 

other "optimal" combinations

$$\begin{split} \sum_{k=1}^{3} \Pi_{k\ k}^{\ \mu}(\mathcal{T}^{4},\vec{q}) &\to \quad G_{e0}, \ G_{e2} \\ \sum_{j,k,l=1}^{3} \epsilon_{jkl} \Pi_{j\ k}^{\ \mu}(\mathcal{T}^{j},\vec{q}) &\to \quad G_{e2}, \ G_{m1}, \ G_{m3} \end{split}$$

• coefficients of  $G_{m1}$ ,  $G_{m3}$  vanish for  $\mu = 4 \rightarrow$  last combination isolates  $G_{e2}$ • All coefficients satisfy  $q_{\mu}c^{\mu} = 0$  (U(1) vector current conservation)

T. Korzec (University of Cyprus)

#### Jackknife binning

If there are  $N_{q^2}$  different  $\vec{q}$  that give the same  $q^2$ 

- $\Rightarrow$  up to 4  $\times$   $N_{q^2}$   $\times$  number of combinations equations for 4 unknowns
  - measure the different combinations for  $\mu = 1 \dots 4$  and the  $N_{q^2}$  directions of  $\vec{q}$
  - solve the linear system in the least-square sense (e.g. via SVD).
  - $\chi^2$  value of the solution should be "reasonable"

 $\Rightarrow$  Jackknife errors of  $G_{e0}$ ,  $G_{e2}$ ,  $G_{m1}$ ,  $G_{m3}$  take all autocorrelation and correlation effects into account.

# $\begin{array}{c} \mbox{Calculation of electromagnetic} \\ \Delta \rightarrow \Delta \mbox{ form factors} \end{array}$

[Lattice 2007 proceedings: C. Alexandrou, T. K, T. Leontiou, J.W. Negele, A. Tsapalis]

T. Korzec (University of Cyprus)

Form factors for the nucleon-∆ system

EINN 2007 21 / 36

# Simulation parameters

- Quenched calculation
- 32<sup>3</sup> × 64 lattice points
- 200 well-separated gauge configurations
- $\beta = 6.0$  (Wilson plaquette action)  $\Rightarrow$  lattice spacing of a = 0.092(3) fm, from nucleon mass.
- $L \approx 3 \text{ fm}$

#### Valence quarks: $N_f = 2$ , degenerate, unimproved Wilson

| $\kappa$ | $m_{\pi} [MeV]$ | $m_{\Delta} [GeV]$ |
|----------|-----------------|--------------------|
| 0.1554   | 563(4)          | 1.470(15)          |
| 0.1558   | 490(4)          | 1.425(16)          |
| 0.1562   | 411(4)          | 1.382(15)          |



EINN 2007 23 / 36

(I)



EINN 2007 23 / 36



・ロト ・回ト ・ヨト ・ヨト



(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

## Chiral extrapolation





EINN 2007 25 / 36

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <



(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <





#### deformation

If spin is quantized along *z*-direction:

 $egin{aligned} G_{e2}(q^2=0)\sim\ m_\Delta^2\int d^3r\,ar\psi(r)\left[3z^2-r^2
ight]\psi(r) \end{aligned}$ 

 $\Rightarrow$  negative  $G_{e2} \leftrightarrow$  oplate  $\Delta$ 



(I)

#### deformation

If spin is quantized along *z*-direction:

 $egin{aligned} G_{e2}(q^2=0)\sim\ m_{\Delta}^2\int d^3r\,ar{\psi}(r)\left[3z^2-r^2
ight]\psi(r) \end{aligned}$ 

 $\Rightarrow$  negative  $G_{e2} \leftrightarrow$  oplate  $\Delta$ 



red line: fit to 
$$\frac{G_{e2}(0)}{(1+c q^2)^2}$$

(I)

#### deformation

If spin is quantized along *z*-direction:

 $G_{e2}(q^2=0)\sim$  $m_\Delta^2\int d^3r\,ar\psi(r)\left[3z^2-r^2
ight]\psi(r)$ 

 $\Rightarrow$  negative  $G_{e2} \leftrightarrow$  oplate  $\Delta$ 



red line: fit to  $\frac{G_{\theta 2}(0)}{(1+c q^2)^2}$ 



EINN 2007 27 / 36



Image: A matrix

(4) E > (4) E

EINN 2007 27 / 36



(4) (3) (4) (4) (4)

EINN 2007 27/36

# Calculation of axial nucleon and nucleon to $\Delta$ form factors

[arXiv:0706.3011 C. Alexandrou, G. Koutsou, T. Leontiou, J.W. Negele, A. Tsapalis]

T. Korzec (University of Cyprus)

Form factors for the nucleon-∆ system

EINN 2007 28 / 36

## Simulation parameters

Same quenched lattices as before, in addition:

Dynamical Wilson quarks,  $N_f = 2$ , a = 0.08 fm,  $L \approx 2$  fm

| κ       | $m_{\pi}$ [MeV] | m <sub>N</sub> [GeV] | $m_{\Delta} [GeV]$ |
|---------|-----------------|----------------------|--------------------|
| 0.1575  | 691(8)          | 1.485(18)            | 1.687(15)          |
| 0.1580  | 509(8)          | 1.280(26)            | 1.559(19)          |
| 0.15825 | 384(8)          | 1.083(18)            | 1.395(18)          |

Configurations created by [T $\chi$ L collaboration, B. Orth et al. Phys. Rev. D72(2005)014503 ]

and [DESY-Zeuthen group, C. Urbach et al. Comput. Phys. Commun. 174(2006)87 ]

Hybrid action: asqtad / domain wall, a = 0.125 fm,  $L \approx 2.5 \text{ fm}$ 

| $m_{\pi} \; [MeV]$ | $m_N [\text{GeV}]$ | $m_{\Delta}$ [GeV] |
|--------------------|--------------------|--------------------|
| 594(1)             | 1.416(20)          | 1.683(22)          |
| 498(3)             | 1.261(17)          | 1.589(35)          |
| 357(2)             | 1.210(15)          | 1.514(41)          |

Configurations created by [MILC collab., C. Aubin et al. Phys. Rev. D70(2004) 094505]

T. Korzec (University of Cyprus)

# Results: $G_A$ and $G_P$

- needs Z<sub>A</sub>
- solid magenta lines: fits of the  $m_{\pi} = 410$  MeV data to  $\frac{g_0}{(Q^2/m_A^2+1)^2}$
- Black dotted line: fit to experimental data
- dashed red line: *G<sub>p</sub>* calculated from *G<sub>A</sub>* via simplified GTR
- Hybrid-approach results by LHPC collaboration
   [P. Hägler et al. hep-lat/0705.4295]



# Results: $C_5^A$ and $C_6^A$



## Results: $G_{\pi NN}$ and $G_{\pi N\Delta}$

- needs calculation of  $m_q$ and  $f_{\pi}$
- dashed lines: from G<sub>A</sub> and C<sub>5</sub><sup>A</sup> via GTR
- values at  $Q^2 = 0$  lower than experiment,e.g.  $G_{\pi NN}(0) = 13.2(1)$



# **Goldberger Treiman relations**

diagonal Goldberger-Treiman relation:

$$G_A(q^2) + rac{q^2}{m_N^2}G_
ho(q^2) = rac{1}{2m_N}rac{2G_{\pi NN}(q^2)f_\pi m_\pi^2}{m_\pi^2 - q^2}$$

non-diagonal Goldberger-Treiman relation

$$C_5^{A}(q^2) + rac{q^2}{m_N^2} C_6^{A}(q^2) = rac{1}{2m_N} rac{2G_{\pi N\Delta}(q^2) f_\pi m_\pi^2}{m_\pi^2 - q^2}$$

under assumption of pion pole dominance: simplification to

$$\begin{array}{lll} G_{\pi NN}(q^2)f_{\pi} &=& m_N G_A(q^2)\\ G_{\pi N\Delta}(q^2)f_{\pi} &=& 2m_N C_5^A(q^2) \end{array}$$

$$\Rightarrow rac{G_{\pi NN}(q^2)}{G_{\pi N\Delta}(q^2)} = rac{G_{A}(q^2)}{2C_5^A(q^2)}$$

T. Korzec (University of Cyprus)

# Test of simplified GTRs

- $G_{\pi N\Delta}$  and  $G_{\pi NN}$  have same  $q^2$  dependence ratio: 1.60(2) consistent with experiment
- In accordance with GTR:  $2C_5^A/G_A = 1.63(1)$  also  $q^2$ independent.



#### Results, electromagnetic $\Delta \to \Delta$ form factors

 look reasonable, consistent with experiment and [Leinweber, Draper, Woloshyn Phys. Rev. D46, 3067 (1992)]

#### • improvement with respect to existing calculations

- q-dependence
- higher precision (important for G<sub>e2</sub>)
- lower pion masses

#### Results, axial nucleon and nucleon to $\Delta$ form factors

- $G_{\pi NN}$  and  $G_{\pi N\Delta}$  have the same  $q^2$  dependence
- Goldberger Treiman relations are satisfied

Further reduce possible error sources

- Statistical errors: under control
- Systematical errors:
  - $\Delta \rightarrow \Delta$ : quenched calculation, work with dynamical fermions in progress
  - contribution of disconnected diagrams
  - chiral extrapolations
    - $\Rightarrow$  need even smaller pion masses
  - finite volume: corrections are expected to be small
  - finite resolution: effects probably significant for increasing  $q^2$