Probing the chiral regime with light dynamical fermions

Gregorio Herdoiza INFN Roma Tor Vergata ETM Collaboration

Hadron Physics on the Lattice, Milos – Sept. 10th, 2007

Milos - 10.09.07

G. Herdoiza

Chiral regime using $N_{\rm f} = 2 \, \rm tmLQCD$

Outline

- Simulations with twisted mass fermions at maximal twist
 - dynamical quarks:
 - physical masses:
 - continuum limit:
 - Iarge volumes:
- Use of χ -PT :
 - quark mass dependence ~> low-energy constants
 - finite volume corrections
- Determine fundamental parameters of QCD :

m_q , $\langle \bar{q}q \rangle$,...

• Outline:

 $N_{
m f}=2$ degenerate light flavours $m_{\pi}\sim 300~{
m MeV}$ ${\cal O}(a)$ improvement $L>2~{
m fm}$

★@ ▶ ★ 理 ▶ ★ 理 ▶ …

3

< D > < P >

Simulations

3 lattice spacings

∃ 990

★ 문 ► ★ 문 ► ...

β	target a (fm)	$L^3 \cdot T$	_{target} L (fm)	aμ	$N_{ m traj}$ ($ au$ = 0.5)	$_{ m target} m_{ m PS}$ (MeV)
4.05	~ 0.066	32 ³ · 64	2.2	0.0030	5200	~ 300
				0.0060	5600	~ 420
				0.0080	5300	~ 480
				0.0120	5000	~ 600
		24 ³ · 48	1.6	0.0060	3000×2	~ 420
		20 ³ · 48	1.3	0.0060	5300×2	~ 420
3.9	~ 0.086	24 ³ · 48	2.1	0.0040	10500	~ 300
				0.0064	5600	~ 380
				0.0085	5000	~ 440
				0.0100	5000	~ 480
				0.0150	5400	~ 590
		32 ³ · 64	2.8	0.0040	5000	~ 300
3.8	~ 0.100	24 ³ · 48	2.4	0.0060	4700 × 2	~ 360
				0.0080	3000×2	\sim 410
				0.0110	2800×2	~ 480
				0.0165	2600×2	~ 580
		20 ³ · 48	2.0	0.0060	4000 × 2	~ 360

Correlators

analysis techniques

▲ Ξ ► 4 Ξ ► 9 < 0</p>

- quark propagators : stochastic sources to include all spatial sources
- change the location of the time-slice source : reduce autocorrelations
- set of interpolating operators (π : $\bar{\psi}\gamma_5\tau_1\psi$, $\bar{\psi}\gamma_0\gamma_5\tau_1\psi$, $\bar{\psi}\gamma_0\tau_2\psi$) and smearing
- autocorrelation times τ_{int} :

β	target a (fm)	aμ	$ au_{\mathrm{int}}(P)$	source	$ au_{ ext{int}}(extsf{am}_{ extsf{PCAC}})$	$ au_{ ext{int}}(extsf{am}_{ extsf{PS}})$	$ au_{ ext{int}}(extsf{af}_{ extsf{PS}})$
3.9	~ 0.086	0.0040 0.0085	47(15) 13(3)	random cyclic cyclic	23(05) 60(24) 66(27)	6(1) 7(1) 10(2)	7(1) 13(4) 11(2)

light-quarks sector

Milos - 10.09.07

G. Herdoiza

Chiral regime using $N_{\rm f} = 2 \, \rm tmLQCD$

■ のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Charged pion: decay constant and χ PT fits

Pseudo-scalar decay constant:

$$f_{
m PS}=rac{2\mu}{m_{
m PS}^2}|\langle 0|P^1(0)|\pi^\pm
angle|$$

- Obtained from exact lattice Ward identity for maximally twisted mass fermions
- no need of renormalization factors : $Z_{\rm P} = 1/Z_{\mu}$

chiral perturbation theory (γ PT)

- Use of continuum γ PT to describe the dependence on :
 - the mass μ
 - finite spatial size L

Simultaneous fit to $N_{\rm f} = 2 \chi \text{PT}$ at NLO (Gasser, Leutwyler, 1987; Colangelo et al., 2005)

$$m_{\rm PS}^2(L) = 2B_0\mu \,\left[1 + \frac{1}{2}\xi \tilde{g}_1(\lambda)\right]^2 \,\left[1 + \xi \ln(2B_0\mu/\Lambda_3^2)\right] \,,$$

$$f_{\rm PS}(L) = f_0 \left[1 - 2\xi \tilde{g}_1(\lambda)\right] \left[1 - 2\xi \ln(2B_0\mu/\Lambda_4^2)\right]$$

where $\xi = 2B_0\mu/(4\pi f_0)^2$, $\lambda = \sqrt{2B_0\mu L^2}$, $f_0 = \sqrt{2}F_0$, $\tilde{g}_1(\lambda)$ is a known function

- fit parameters: B_0 , f_0 , Λ_3 and Λ_4
- extract low-energy constants: $\overline{l}_{3,4} \equiv \log(\Lambda_{3,4}^2/m_{\pi^+}^2)$
- $\mathcal{O}(a^2)$ effects appear at NNLO only

Power counting for lattice χ PT:

$$a\sim \mu\sim m_\pi^2\sim p^2$$

 $\mathcal{O}(a^2)$ effects appear at NNLO only

•
$$f_{\pi}|^{\text{Mtm}} = f_{\pi}|^{\text{cont.}} + \mathcal{O}(a^2) + \mathcal{O}(a^2m_{\pi}^2)$$

(NNLO) (N³LO)
• $m_{\pi}^2|^{\text{Mtm}} = m_{\pi}^2|^{\text{cont.}} + \mathcal{O}(a^2m_{\pi}^2) + \mathcal{O}(a^4)$
(NNLO) (N³LO)

Consistent use of continuum χ PT at NLO

э

Outline setup Light Strange Charm Baryon WME χ PT Single-fit Comb. Cont. LEC FSE m_a $\langle \bar{q}q \rangle$ χ PT fits: $f_{\rm PS}$ VS. $Z_{\mu}\mu$ $\beta = 4.05$ and 3.9

we use at $\beta = 4.05$: $r_0/a = 6.61(3)$ $\beta = 3.9$: $r_0/a = 5.22(2)$

.⊒...>

Outline Setup Light Strange Charm Baryon WME χ PT Single-fit Comb. Cont. LEC FSE m_a $\langle \bar{q}q \rangle$ χ PT fits: $f_{\rm PS}$ VS. $Z_{\mu}\mu$ $\beta = 4.05$ and 3.9

we use at $\beta = 4.05$: $r_0/a = 6.61(3)$ $\beta = 3.9$: $r_0/a = 5.22(2)$

Milos - 10.09.07

G. Herdoiza

OutlineSetupLightStrangeCharmBaryonWME χ PTSingle-fitComb.Cont.LECFSE m_q $\langle \bar{q}q \rangle$ χ PTfits: $m_{PS}^2/(Z_\mu\mu)$ VS. $Z_\mu\mu$ $\beta = 4.05$ and3.9

Milos - 10.09.07

OutlineSetupLightStrangeCharmBaryonWME χ PTSingle-fitComb.Cont.LECFSE m_q $\langle \bar{q}q \rangle$ χ PTfits: $m_{PS}^2/(Z_\mu\mu)$ VS. $Z_\mu\mu$ $\beta = 4.05$ and3.9

Milos - 10.09.07 G. Herdoiza Chiral regime using $N_{\rm f}=2$ tmLQCD

OutlineSetupLightStrangeCharmBaryonWME χ PTSingle-fitComb.Cont.LECFSE m_q $\langle\bar{a}q\rangle$ χ PTfits: $m_{PS}^2/(Z_\mu\mu)$ VS. $Z_\mu\mu$ $\beta = 4.05$ and3.9

Milos - 10.09.07

 χ PT fits: results

$\beta = 3.9$ and 4.05

★ 문 ► ★ 문 ► ...

■ のへで

β	parameter	This work	[hep-lat/0701012)
4.05	$2aB_0$	3.88(7)	-
	af ₀	0.0404(7)	-
	$\chi^2_{\rm red}$	0.8	-
	Ī3	3.70(16)	-
	\overline{I}_4	4.65(5)	-
3.9	$2aB_0$	4.84(3)	4.99(6)
	af ₀	0.0528(4)	0.0534(6)
	χ^2_{red}	1.3	0.15
	Ī3	3.37(8)	3.65(12)
	<u> </u>	4.60(3)	4.52(6)

0	The "physical point" $a\mu_{\pi}$ is determined by requiring $m_{\rm PS}/f_{\rm PS} = 135/130.7 = 1.033 \rightsquigarrow e.g$ at $\beta = 3.9$ we get :	$a\mu_{\pi} = 0.00073(2)$
٩	Taking $f_{\pi} = 130.7$ MeV, we obtain :	<i>a</i> = 0.0858(5) fm
۲	Using $r_0/a = 5.22(2)$ we get :	$r_0 = 0.448(3) \text{ fm}$

Combined fits

$\beta = 3.9$ and 4.05

$$m_{\rm PS}^2 = 2B_0\mu \left[1 + \xi \ln(2B_0\mu/\Lambda_3^2)\right]$$

$$f_{\rm PS} = f_0 \left[1 - 2\xi \ln(2B_0\mu/\Lambda_4^2) \right]$$

where $\xi = 2B_0 \mu / (4\pi f_0)^2$, $f_0 = \sqrt{2}F_0$,

• 6 fit parameters: $(aB_0)|_{\beta=3.9}$, $(aB_0)|_{\beta=4.05}$, $(af_0)|_{\beta=3.9}$, $(af_0)|_{\beta=4.05}$, Λ_3/f_0 and Λ_4/f_0

16 data points ; higher masses ($m_{\rm PS} \sim 600$ MeV) not included in the fit ۰

Precise results for the LEC.

β	3.9	4.05	combined		
$\chi^2_{\rm red}$	1.3	0.8	1.2		
a (fm)	0.0858(5)	0.065/(11)	0.0855(5)(3)	0.0666(6)(9)	
l ₃	3.37(8)	3.70(16)	3.44(8)(26)(6)		
Ī4	4.60(3)	4.65(5)	4.61(4)(3)(7)		

Consistent with independent measurements:

•
$$a|_{\beta=3.9}/a|_{\beta=4.05} = 1.284(14)(18)$$

fit:
$$Z_{\mu}|_{\beta=3.9}/Z_{\mu}|_{\beta=4.05} = 1.007(17)$$

 $(r_0/a)|_{\beta=4.05}/(r_0/a)|_{\beta=3.9} = 1.266(8)$ RI-MOM : $Z_{\mu}|_{\beta=3.9}/Z_{\mu}|_{\beta=4.05} = 1.05(3)(7)$

Milos - 10.09.07

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Combined fits: $f_{\rm PS}$ vs. $2B_0\mu$

$\beta = 4.05$ and 3.9

Milos - 10.09.07

Continuum extrapolation: $f_{\rm PS}$

Strategy:

Bring volumes to a reference volume:

$$L_{\rm ref} = 2.2 \, {\rm fm}$$

▲ Ξ ► 4 Ξ ► 9 < 0</p>

Interpolate data points to some reference pion masses:

 $m_{\rm PS}r_0 = (0.7, 0.8, 0.9, 1.0, 1.1, 1.25)$

Estimate continuum limit by extrapolating at fixed volume:

Weighted average of data at $\beta = 4.05$ and 3.9

Use the coarse lattice ($\beta = 3.8$) to include a systematic error

Continuum extrapolation: $f_{\rm PS}$

æ

Continuum extrapolation: $\mu_{\rm R}$

Chiral fits in the continuum

PRELIMINARY

ъ

Outline Setup Light Strange Charm	Baryon WME	χ PT Single-fit	Comb.	Cont.	LEC	FSE	mq	(āc
low-energy cons	tants (LE	EC)						
Accurate determinations of \overline{l}_3 ,	$_{4}\equiv\log(\Lambda_{3,4}^{2}/m_{\pi}^{2})$.±)						_
$\overline{l}_3 =$		3.44(8)(2	26)(6)					
$\overline{l}_4 =$		4.61(4)	(3)(7)					
Other estimates		(Leutwyler, h	ep-ph/C	0612112	2; la	ittice	2007)	
• 73:								
• $\bar{l}_3 = 2.9 \pm 2.4$	from the m	ass spectrum	of the p	pseud	losco	alar	octet	t
• $\bar{l}_3 = 0.8 \pm 2.3$					fi	rom	MILC	2
• $\bar{l}_3 = 3.0 \pm 0.5$					fre	om (CERN	1
• $\bar{l}_3 = 3.49 \pm 0.$	12				fror	mQ	CDSF	=
• $\bar{l}_3 = 2.9 \pm 0.5$					froi	m JL)
• $\bar{l}_3 = 3.13 \pm 0.$	33			from	n RBC	C/UK)
• ī ₄ :								
• $\bar{l}_4 = 4.3 \pm 0.9$					fi	rom	f_{K}/f_{π}	r
• $\bar{l}_4 = 4.4 \pm 0.2$	from	the radius of t	he sca	ılar pic	on fo	rm f	acto	r
• $\bar{l}_{4} = 4.0 \pm 0.6$					fi	rom	MILC	2
• $\vec{l}_{4} = 4.69 \pm 0.$	14				fror	mQ	CDSF	:
• $\overline{l}_{4} = 4.3 \pm 0.6$					froi	m JL	QCD)
• $\bar{l}_4 = 4.42 \pm 0.0$	14			from	n RBC)/UK	QCD) 🧳
Milos - 10.09.07	G. Herdoiza	Chiral regime u	sing N _f =	= 2 tmLG	CD	.,		

$\pi\pi$ scattering

radius of the scalar pion form factor :

This work: (r²) = 0.637 ± 0.026 fm² (statistical)
Colangelo *et. al*, 2001: (r²) = 0.61 ± 0.04 fm² Colangelo *et. al*, 2001: (r²) = 0.61 ± 0.04 fm² Colangelo *et. al*, 2001: (r²) = 0.61 ± 0.04 fm² Colangelo *et. al*, 2001: (r²) = 0.61 ± 0.04 fm² Colangelo *et. al*, 2001: (r²) = 0.61 ± 0.04 fm² Colangelo *et. al*, 2001: (r²) = 0.61 ± 0.04 fm² Colangelo *et. al*, 2001: (r²) = 0.61 ± 0.04 fm² Colangelo *et. al*, 2001: (r²) = 0.61 ± 0.04 fm² Colangelo *et. al*, 2001: (r²) = 0.61 ± 0.04 fm² Colangelo *et. al*, 2001: (r²) = 0.61 ± 0.04 fm² Colangelo *et. al*, 2001: (r²) = 0.61 ± 0.04 fm² Colangelo *et. al*, 2001: (r²) = 0.61 ± 0.04 fm² (r²) = 0.

ъ

$\pi\pi$ scattering

radius of the scalar pion form factor :

♦ This work: (r²) = 0.637 ± 0.026 fm² (statistical)
 ♦ Colangelo *et. al*, 2001 : (r²) = 0.61 ± 0.04 fm²

Milos - 10.09.07 G. Herdoiza Chiral regime using $N_{\rm f}=2$ tmLQCD

Data shows an exponential behaviour as a function of $m_{PS}L$ Study of finite size corrections:

★聞 ▶ ★ 臣 ▶ ★ 臣 ▶

ъ

Renormalization and quark masses

• renormalization constants of bilinear quark operators : Z_P

non-perturbatively (RI-MOM)

• *u-d* quark mass:

$\overline{\beta}$	3.9	4.05	combined	
$\overline{a\mu_{\pi}}$	0.000732(15)	0.000537(12)	0.000719(13)	0.000568(13)
$Z_P[\overline{MS}, 2 \text{ GeV}]$	0.46(1)(2)	0.44(1)(2)	-	-
$m_{u,d}[\overline{\text{MS}}, 2 \text{ GeV}] (\text{MeV})$	3.66(11)(16)	3.67(13)(24)	3.61(10)(16)	3.82(13)(24)

From PQ analysis:

 $\beta = 3.9$

E nac

< 臣 → < 臣 → …

 $m_{u,d}[\overline{\text{MS}}, 2 \text{ GeV}] = 4.01(12)(37) \text{ MeV}$

Milos - 10.09.07 G. Herdoiza Chiral regime using $N_{\rm f}=2$ tmLQCD

Chiral condensate $\langle \bar{q}q \rangle$

From the χ PT fits we extract:

$$\langle \bar{q}q \rangle = -Z_P F_0^2 B_0$$

- $\beta = 3.90: (-\langle \bar{q}q \rangle)^{1/3} = 266(3)(5) \text{ MeV}$
- $\beta = 4.05$: $(-\langle \bar{q}q \rangle)^{1/3} = 266(6)(6) \text{ MeV}$

• Comparison: ϵ regime gives at $\beta = 3.90$ $(-\langle \bar{q}q \rangle)^{1/3} = 262(12)(4) \text{ MeV}$

strange-quark sector :

partially quenched

★ E ► < E ►</p>

æ.

$m_K f_K$ $m_s |V_{us}|$

Milos - 10.09.07 G. Herdoiza Chiral regime using $N_{\rm f}=2$ tmLQCD

strange-quark sector :

• Setup :

oquark masses

• light :

volume :

statistics :

strange :

• lattice spacing : $\beta = 3.9$

(partially quenched)

setup and strategy

 $\mu_{sea} = \mu_S$ and $\mu_{val} = \{\mu_1, \mu_2\}$

 $\mu_{\mathcal{S}}$ and $\mu_{1}~\in$ [1/6; 2/3] $m_{\!s}$

 $\mu_{1,2}\sim m_s$ (and $\mu_2\geq \mu_1=\mu_S$)

 $a\sim$ 0.09 fm

 $L\sim 2.1~{\rm fm}$ and $m_{\rm PS}L\geq 3.2$

240 confs for each μ_S

▲□▶▲圖▶▲圖▶▲圖▶ ▲国▶

stochastic all to all propagators

• Strategy:

- extrapolation to m_{u,d} and interpolation to m_s
- experimental inputs:
 - light: $a\mu_{u,d}$ from $(m_{\pi}/f_{\pi})^{exp.}$
 - *a* from $(f_{\pi})^{exp.}$
 - strange : $a\mu_s$ from $(m_K)^{exp.}$

Milos - 10.09.07

G. Herdoiza

Chiral regime using $N_{\rm f} = 2 \, \rm tmLQCD$

.⊒...>

Setup χ PT m_s f_K

 $\beta = 3.9$

strange-quark sector : f_{PS} vs. μ

G. Herdoiza Milos - 10.09.07

Setup χ PT m_s f_K

Renormalization, m_s and f_K

Results:

- Central values: average of polynomial and PQ χ PT fits with FS corrections and $\mu_2 \ge \mu_1 = \mu_S$
- Systematic error: spread between polynomial/PQ χ PT and FSE

As before: renormalization constants of bilinear quark operators : Z_P

non-perturbatively (RI-MOM)

▲□▶▲圖▶▲圖▶▲圖▶ ▲国▶

 $\beta = 3.9$

Strange quark mass :

 $m_s[\overline{MS}, 2 \text{ GeV}] = 109(3)(8) \text{ MeV}$ $m_s/m_{u,d} = 27.3(2)(9)$

decay constant :

 $f_{K} = 158.8 \pm 1.3 \pm 2.4 \text{ MeV}$ $f_{K}/f_{\pi} = 1.214(10)(18)$

● |V_{us}|:

 $|V_{us}|/|V_{ud}| = 0.2275(6)(39)$ $|V_{us}| = 0.2215(5)(38)$

strange-quark sector : m_s comparison of results

Milos - 10.09.07

ヘロアメロアメ 回アメロア

ъ

strange-quark sector : f_K/f_π comparison of results

Milos - 10.09.07

 $egin{array}{ccc} m_D & f_D \ m_{D_s} & f_{D_s} \ m_C \end{array}$

Milos - 10.09.07

G. Herdoiza

Chiral regime using $N_{\rm f}=2$ tmLQCD

▲ 문 ▶ ▲ 문 ▶ ...

æ.

setup and strategy

▲□▶▲圖▶▲圖▶▲圖▶ ▲国▶

• Setup : auark masses (partially quenched) $\mu_{sea} = \mu_S$ and $\mu_{val} = \{\mu_1, \mu_2\}$ $\mu_{\rm S}$ and $\mu_{\rm 1} \in [1/6; 2/3] \, m_{\rm s}$ light: strange : $\mu_{1,2} \sim m_s$ charm : $\mu_2 \sim m_c$ lattice spacings : $\beta = 3.9$ and 4.05 a = (0.07, 0.09) fm volume : $L \sim 2.1$ fm and $m_{\rm PS}L > 3.2$ statistics : 240 confs. at $\beta = 3.9$ (each 20 traj. $\tau = 0.5$) 130 confs. at $\beta = 4.05$ (each 20 traj. $\tau = 1.0$)

Setup m_c f_D

stochastic all to all propagators

Setup m_c f_D

charm-quark sector :

setup and strategy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─ のへで

• Strategy:

• extrapolation to $m_{u,d}$ and interpolations to m_s and m_c

- experimental inputs:
 - light: $a\mu_{u,d}$ from $(m_{\pi}/f_{\pi})^{exp.}$
 - a from $(f_{\pi})^{exp.}$
 - strange : $a\mu_s$ from $(m_K)^{exp.}$
 - charm : $a\mu_c$ from $(m_D)^{exp.}$

Illustration of light and heavy quark-mass dependences: $m_{PS}(\mu_{sea}, \mu_{val}^{light}, \mu_{val}^{heavy})$

Setup mc fD

Renormalization, m_c

$\beta = 3.9$ and 4.05

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ろのの

 $\beta = 4.05$: $m_c[\overline{\text{MS}}, 2 \text{ GeV}] = 1.475(43)(62)(16)\binom{+0}{-9}$ GeV

Illustration of light valence and sea quark-mass dependences:

 $f_{\rm PS}(\mu_{\rm sea},\mu_{\rm val}^{\rm light},\mu_{\rm val}^{\rm heavy})$

Illustration of strange and charm quark-mass dependence: $f_{PS}(\mu_{sea}, \mu_{val}^{l,s}, \mu_{val}^{heavy})$

 $a^{3/2} f_{\rm PS} \sqrt{m_{\rm PS}} = A + B/am_{\rm PS} + C/(am_{\rm PS})^2$

< ≣⇒

 f_D and f_{D_e}

$\beta = 3.9$ and 4.05

▲□▶▲圖▶▲圖▶▲圖▶ ▲国▶

$$\beta = 3.9$$
 : $m_{D_s}/m_D = 1.072(13)(4)(8)$

 $\beta = 4.05$: $m_{D_s}/m_D = 1.047(29)(2)(2)$

Milos - 10.09.07 G. Herdoiza Chiral regime using $N_{\rm f}=2$ tmLQCD

Setup Nucleon χ -fit Δ

baryon sector

 $m_N m_\Delta$

Milos - 10.09.07 G. Herdoiza Chiral regime using $N_{
m f}=2$ tmLQCD

▲ 臣 ▶ ▲ 臣 ▶ …

baryon sector :

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → の Q ()~

point-like sources randomly located

baryon sector : nucleon

$\beta = 3.9$ and 4.05

∃ ► < ∃ ►</p>

ъ

- cut-off effects appear to be small
- finite volume effects for smallest mass value at $\beta = 3.9$ negligible

baryon sector : nucleon χ -fits

• χ -fit : fitting m_0 and c_1

(1-loop: $\mathcal{O}(p^3)$)

ъ

$$m_{
m N} = m_0 + c_1 m_{
m PS}^2 - rac{3g_A^2}{32\pi f_{
m PS}^2} m_{
m PS}^3$$

• if $m_{\rm N}$ is used to set the scale for $\beta = 3.9$: $a(\beta = 3.9) = 0.0873(10)(5) \text{ fm}$

Milos - 10.09.07 G. Herdoiza Chiral regime using $N_{\rm f}=2$ tmLQCD

(PRELIMINARY)

< 문 > < 문 >

э

Form factors

Milos - 10.09.07 G. Herdoiza Chiral regime using $N_{\rm f}=2$ tmLQCD

∃ 990

< 注 → …

pion form factor

 $\beta = 3.9$

Setup Pion

Statistic : 80 confs.

 $F^{\text{pole}}(q^2) = 1/(1 - \frac{\langle r^2 \rangle}{6}q^2)$

Conclusions

Summary:

- Perform a study of χ PT at fixed lattice spacings and in the continuum
- Small discretization effects
- Good description of our pion data with continuum $N_{\rm f}=2$ NLO $\chi {\rm PT}$
- Extraction of LEC, m_q and $\langle \bar{q}q \rangle$ with good statistical precision
- Study of FSE
- Preliminary results in the strange, charm, nucleon sectors and WME
- Setting the scale: pion, nucleon

On going:

- χ PT description of the data in the continuum
- Check of NNLO χ PT in the continuum

|▲ 臣 ▶ ▲ 臣 ▶ □ 臣 → のへ(?)

Milos - 10.09.07 G. Herdoiza Chiral regime using $N_{\rm f}=2$ tmLQCD

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

$\beta = 4.05$ and 3.9

Sommer parameter r_0 : static inter-quark force

- HYP-smeared temporal links, APE smeared spatial links, correlator matrix
- statistical accuracy of less than 0.5%,
- compatible with μ^2 dependence

$$\Rightarrow \text{ at } \mu \to 0: \qquad \beta = 4.05: \ \mathbf{r}_0/a = 6.61(3) \qquad \beta = 3.9: \ \mathbf{r}_0/a = 5.22(2) \\ \beta = 3.8: \ \mathbf{r}_0/a = 4.46(3)$$

• setting the scale: use several quantities, e.g. m_{π} , f_{π} , m_{K} , m_{K^*} , f_{K} , m_{N} ,...

Finite Size Effects

 comparison to NLO χPT [Gasser, Leutwyler, 1987, 1988] (GL) or resummed Lüscher formula [Colangelo, Dürr, Haefeli, 2005] (CDH)

	β	m _{PS} L	meas (%)	GL (%)	CDH (%)
$m_{\rm PS}$	3.9	3.3	+1.8	+0.62	+1.13
$f_{\rm PS}$	3.9	3.3	-2.5	-2.48	-2.39
$\overline{m_{\mathrm{PS}}}$	4.05	3.0	+6.2	+2.2	+6.1
$f_{\rm PS}$	4.05	3.0	-10.7	-8.8	-10.3
$\overline{m_{\mathrm{PS}}}$	4.05	3.5	+1.1	+0.8	+1.5
$f_{\rm PS}$	4.05	3.5	-1.8	-3.4	-2.9

- as input for the parameters estimates from CDH were used
- CDH describes our data in general better than GL for the price of more parameters

(ロ) (同) (三) (三) (三) (○) (○)

Conclusions

Pion Mass Splitting

at $\beta = 4.05$ splitting still as large as 16%, however ...

- not easy to measure: disconnected contributions!
- $m_{\rm PS}^{\pm}$, $m_{\rm PS}^{0}$ mass splitting vanishes like a^2
- $am_{\rm PS}^0 < am_{\rm PS}^\pm$ consistent with prediction from $\chi {\rm PT}$ for observed phase structure

.⊒...>

Pion Mass Splitting

Expect generically large a^2 artifacts all over the place?

an analysis a la Symanzik shows that

$$\begin{split} (m_{\rm PS}^0)^2 &= m_{\pi}^2 + a^2 \zeta_{\pi}^2 + \mathcal{O}(a^2 m_{\pi}^2, a^4) \,, \qquad \zeta_{\pi} \equiv \langle \pi^0 | \mathcal{L}_6 | \pi^0 \rangle |_{\rm cont} \\ (m_{\rm PS}^{\pm})^2 &= m_{\pi}^2 \qquad + \mathcal{O}(a^2 m_{\pi}^2, a^4) \end{split}$$

• ζ_{π} has a dynamically large contribution:

$$a^2 \zeta_{\pi}^2 \sim a^2 |\hat{G}_{\pi}|^2$$
, $\hat{G}_{\pi} \equiv \langle 0|\hat{P}^3|\pi^0 \rangle = \frac{f_{\pi} m_{\pi}^2}{2m_q} \sim (570 \text{ MeV})^2$

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ � � �

- $|\hat{G}_{\pi}|^2/\Lambda_{QCD}^4 \sim 25 \rightarrow \text{potentially large } a^2$ effects compared to their "natural" size $a^2 \Lambda_{QCD}^4$
- ζ_{π} enters only π^{0} -mass related quantities!

Pion Mass Splitting

Expect generically large a^2 artifacts all over the place?

- ζ_{π} enters only π^0 -mass related quantities hence: no!
- indeed, we find:
 - splitting in the vector channel consistent with zero
 - Δ^{++} , Δ^+ splitting consistent with zero
 - $f_{\rm PS}^{\pm}$ to $f_{\rm PS}^0$ difference small
- implication for Wilson and Wilson clover: ζ_{π} might contribute in many quantities

ヘロト ヘ戸ト ヘヨト ヘヨト