Electromagnetic and spin polarisabilities from lattice QCD

William Detmold University of Washington

EINN Workshop, Milos, September 10th 2007

Outline

- Hadron polarisabilities
- Lattice techniques
- Chiral perturbation theory
 - QCD results from unphysical hadrons

Hadron polarisabilities

- Hadron polarisabilities describe the deformation of a particle in an external (EM) field
- Quadratic energy shifts from effective Hamiltonian:

$$\mathcal{H} = \mathcal{H}_0 - \vec{\mu} \cdot \vec{B} - 2\pi \alpha |\vec{E}|^2 - 2\pi \beta |\vec{H}|^2 - 2\pi \gamma_1 \vec{\sigma} \cdot \vec{E} \times \vec{E} + \dots$$

Magnetic moment

- Electric and magnetic polarisabilities: ability to align with or against the applied field
- Spin and higher order polarisabilities are less intuitive: more detailed view of EM structure

Compton scattering

 p, d: Experimentally measured in the low frequency limit of real Compton scattering

 Thomson limit and Low–Gell-Mann–Goldberger LET determined by Born terms (charge and magnetic moment)

$$T_{\gamma N} = f(\underline{\omega, \vec{q}, \vec{q}', \vec{\epsilon}, \vec{\epsilon}', \vec{\sigma}}; Z, \mu, \underline{\alpha, \beta}, \underline{\gamma_{1, \dots, 4}}) + \mathcal{O}(\omega^{4})$$
Kinematics

Next order given in terms EM and spin polarisabilities

Experiment

- MAMI, Saskatoon, JLab, OOPS, ELSA, <u>HIγS</u>
- EM and 2 combinations of spin polarisabilities are measurable for the proton but *difficult* experiments
- Neutron accessed via (quasi-)elastic Compton scattering on the deuteron - even more difficult

$$\begin{split} \alpha_p &= 12.0(6), \quad \beta_p = 1.9(6), \quad \alpha_n = 13(2), \quad \beta_n = 3(2) \quad 10^{-4} \, \mathrm{fm}^3 \\ \gamma_\pi^{(p)} &= -39(2), \quad \gamma_0^{(p)} = -1.0(1), \quad \gamma_\pi^{(n)} = 59(4), \qquad 10^{-4} \, \mathrm{fm}^4 \\ & \text{[de Jaeger & Hyde-Wright 05]} \end{split}$$

- Sign and small size of polarisabilities indicates tightly bound diamagnetic system - hard to deform
 - Spin polarisabilities HlγS: ~10% errors by 2010

Pion polarisabilites

- A number of different measurements: most involve nuclear targets
- 3σ disagreement
 with two-loop χPT
- Big improvements in future: COMPASS, JLab@12 GeV

A. Guskov (COMPASS) ICHEP'06

Pion polarisabilites

- A number of different measurements: most involve nuclear targets
- 3σ disagreement
 with two-loop χPT
- Big improvements in future: COMPASS, JLab@12 GeV

See talk on Friday: Daniele Panzieri

A. Guskov (COMPASS) ICHEP'06

Further polarisabilities

- Higher orders in the frequency expansion gives higher order polarisabilities [Holstein et al. '99]
- Virtual and doubly virtual Compton scattering leads to generalised polarisabilities [Guichon, Liu & Thomas '95]

Lattice approaches

- 1. Four point correlators: $\langle 0|\chi(x_1)J^{\mu}(y_1)J^{\nu}(y_2)\overline{\chi}(x_2)|0\rangle$
 - Analogous to experimental measurement
 - Many disconnected contractions and doubly extended propagators eg:

- Extraction of magnetic/spin pols requires momentum extrapolation
- Pols: used by Engelhardt with some success

Lattice approaches

- Energy shifts in two point correlators in external U(1) field
 - QCD: external field must be known during gauge field generation
 - costly but multipurpose
 - Quenched QCD: external field can be added after gauge configurations are generated
 - unrelated to physical poalarisabilities
 - Partially quenched QCD: physical results from unphysical hadrons

External field method

Quenched external fields simple to apply:

 $U^{a}_{\mu}(x) \rightarrow U^{a}_{\mu}(x) \cdot U^{\text{ext}}_{\mu}(x) \qquad U^{(a)}_{\mu}(x) = e^{i \, a \, g \, A^{(a)}_{\mu}(x)}$ • E.g.: magnetic field $\vec{B} = (0, 0, B)$ Quantised for single-valuedness

$$U_0^{\text{ext}} = U_2^{\text{ext}} = U_3^{\text{ext}} = 1, \ U_1(x) = e^{ieBx_2}$$

Look for shift in energy quadratic in |B|

$$\begin{split} C_{\uparrow\uparrow}(\tau,B) &= \sum_{\vec{x}} \langle 0 | \chi_{\uparrow}(\vec{x},t) \overline{\chi}_{\uparrow}(0) | 0 \rangle \\ &= \exp\left[-(M - \mu)B| + 2\pi\beta B|^2)\tau\right] + \mathcal{O}(|B|^3) \\ &\text{Magnetic moment} \end{split}$$

Field constraints

- Field values are restricted by a number of constraints
 - Perturbative in EFT: $|eB|, |eE| < m_{\pi}^2$
 - Periodicity of box: e.g. magnetic field

$$U_{\mu}(x + L\hat{\nu}) = U_{\mu}(x)$$
$$a^{2}|eB| = \frac{2\pi n}{L}, \quad n \in \mathbb{Z}$$

- Landau levels well represented
- Caveat: existing calculations do not satisfy these conditions!

Field constraints

- Field values are restricted by a number of constraints
 - Perturbative in EFT: $|eB|, |eE| < m_{\pi}^2$
 - Periodicity of box: e.g. magnetic field

$$U_{\mu}(x + L\hat{\nu}) = U_{\mu}(x)$$
$$a^{2}|eB| = \frac{2\pi n}{L^{2}}, \quad n \in \mathbb{Z}$$

Periodicity up to gauge transformation

- Landau levels well represented
- Caveat: existing calculations do not satisfy these conditions!

External field method

- Can study more than energy shifts <u>hadronic</u> correlator analysis = effective field theory
 - matching behaviour of QCD correlator to EFT correlator (not just in ε-regime)

• E.g.: proton in constant electric field $(T=\infty)$

$$\begin{split} C_{ss'}(\tau;E) &= \sum_{\vec{x}} \langle 0 | \chi_s(\vec{x},t) \overline{\chi}_{s'}(0) | 0 \rangle_E \\ &= \delta_{s,s'} \exp\left[-(M+2\pi\alpha|E|^2)\tau - \underbrace{\frac{q^2|E|^2}{6M}\tau^3}_{\text{Electric polarisability}} \tau^3 + \dots \right] \\ \bullet \text{ Valid for } L^{-1} < m_{\pi}, \ |eE| < m_{\pi}^2 \end{split}$$

External field method

- All meson/baryon polarisabilities can be calculated
 - utilise all information in hadron correlators including spin-flip matrix elements
 - spin polarisabilities require space/time varying U(1) fields: E.g. γ_{E1E1}

$$U_{\mu}^{\text{ext}} = e^{iaeA_{\mu}(x)}, A_{\mu}(x) = \left(-\frac{a_{6}t^{2}}{2a}, \frac{-ib_{6}t}{2}, 0, 0\right)$$
$$\frac{C_{\uparrow\uparrow}(\vec{p}, \tau; A)}{C_{\downarrow\downarrow}(\vec{p}, \tau; A)} = \exp\left[\frac{2\pi}{a}a_{6}b_{6}\gamma_{E_{1}E_{1}}\tau\right] + \dots$$

Quenched polarisabilities

- External field calculations of magnetic moments and EM polarisabilities have a long history
 - Martinelli et al., Bernard et al.: μ for n, p, Δ [83]
 - Fiebig et al.: α for neutron [89]
 - Christensen et al.: α for uncharged particles [05]
 - Lee et al.: μ , β for many hadrons [05]
 - Shintani et al.: α for neutron [06]

Quenched magnetic polarisabilities

[Lee et al., hep-lat/0509065]

Use four (non-quantised)field values

Quenched electric polarisabilities

[Christensen et al., hep-lat/0408024]

- Also do calculations with four field values (pos/neg)
- Neutral particles $n, \Sigma^0, \Xi^0, \Delta^0 \Sigma^{*0}, \Xi^{*0}, \pi^0, K^0, \rho^0, K^{*0}$

Quenched magnetic moments

[WD, Tiburzi, Walker-Loud]

• Use eight "weak" field values: spin difference

Quenched magnetic moments

• Use eight "weak" field values

Quenched magnetic polarisabilities

• Spin average

Quenched pion polarisabilities

Chiral perturbation theory

- Many studies of hadron polarisabilities in the context of chiral perturbation theory
 - pions and nucleons
- Extended to partially-quenched χPT at finite volume [WD,Tiburzi,Walker-Loud]
 - FV effects are significant
 - Post-multiplying unquenched gauge fields?

Nucleon polarisabilities

Anomalous $\pi^0 \rightarrow \gamma \gamma$

 Δ -pole graphs

Nucleon polarisabilities

Anomalous $\pi^0 \rightarrow \gamma \gamma$

 Δ -pole graphs

 \bigcirc

Infinite volume results

Proton electric polarisability at NLO [SU(4|2)]

Involve axial couplings and quark charges

$$\alpha_{p} = \frac{e^{2}}{4\pi f^{2}} \left[\frac{5G_{B}}{192\pi} \frac{1}{m_{\pi}} + \frac{5G_{B}'}{192\pi} \frac{1}{m_{uj}} + \frac{G_{T}}{72\pi^{2}} F_{\alpha}(m_{\pi}) + \frac{G_{T}'}{72\pi^{2}} F_{\alpha}(m_{uj}) \right]$$
Non-analytic function involving Δ isobar

$$F_{\alpha}(m) = \frac{9\Delta}{\Delta^2 - m^2} - \frac{\Delta^2 - 10m^2}{2(\Delta^2 - m^2)^{3/2}} \ln\left[\frac{\Delta - \sqrt{\Delta^2 - m^2 + i\epsilon}}{\Delta + \sqrt{\Delta^2 - m^2 + i\epsilon}}\right]$$

• Results for other polarisabilities similar but also have contributions from anomaly and Δ poles

Infinite volume results

Proton electric polarisability at NLO [SU(4|2)]

Involve axial couplings and quark charges

$$\alpha_{p} = \frac{e^{2}}{4\pi f^{2}} \left[\frac{5G_{B}}{192\pi} \frac{1}{m_{\pi}} + \frac{5G_{B}'}{192\pi} \frac{1}{m_{uj}} + \frac{G_{T}}{72\pi^{2}} F_{\alpha}(m_{\pi}) + \frac{G_{T}'}{72\pi^{2}} F_{\alpha}(m_{uj}) \right]$$
Singular in chiral limit
Non-analytic function involving Δ isobar
 $F_{\alpha}(m) = \frac{9\Delta}{\Delta^{2} - m^{2}} - \frac{\Delta^{2} - 10m^{2}}{2(\Delta^{2} - m^{2})^{3/2}} \ln \left[\frac{\Delta - \sqrt{\Delta^{2} - m^{2} + i\epsilon}}{\Delta + \sqrt{\Delta^{2} - m^{2} + i\epsilon}} \right]$

• Results for other polarisabilities similar but also have contributions from anomaly and Δ poles

χ PT at finite volume

 Volume dependence can be incorporated depending on pion mass and volume

XPT at finite volume Volume dependence can be incorporated depending on pion mass and volume

Finite volume effects

- Polarisabilities are very sensitive to infrared scales
 - Expect large FV effects in lattice calculations
- Easily included in EFT for large volumes
 - Quantised momenta: $\vec{k} = \frac{2\pi}{T}\vec{n}$ for $n_i \in \mathbb{Z}$

• Momentum integrals \Rightarrow mode sums

$$\int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 - m_\pi^2 + i\epsilon} \to \int \frac{dk_0}{2\pi L^3} \sum_{\vec{k}} \frac{1}{k_0^2 - |\vec{k}|^2 - m_\pi^2 + i\epsilon}$$

Finite volume effects

- Polarisabilities are very sensitive to infrared scales
 - Expect large FV effects in lattice calculations
- Easily included in EFT for large volumes
 - Quantised momenta: $\vec{k} = \frac{2\pi}{T}\vec{n}$ for $n_i \in \mathbb{Z}$

• Momentum integrals \Rightarrow mode sums

$$\int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 - m_\pi^2 + i\epsilon} \to \int \frac{dk_0}{2\pi L^3} \sum_{\vec{k}} \frac{1}{k_0^2 - |\vec{k}|^2 - m_\pi^2 + i\epsilon}$$
$$\longrightarrow \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 - m_\pi^2 + i\epsilon} + \frac{m_\pi^2}{4\pi^2} \sum_{\vec{n}\neq\vec{0}} \frac{1}{|\vec{n}|L} K_1(|\vec{n}|m_\pi L)$$

Poisson summation $\sum_{\vec{n}} \delta^{(3)}(\vec{y} - \vec{n}) = \sum_{\vec{m}} e^{2\pi i \vec{m} \cdot \vec{y}}$

Finite volume effects

- Polarisabilities are very sensitive to infrared scales
 - Expect large FV effects in lattice calculations
- Easily included in EFT for large volumes
 - Quantised momenta: $\vec{k} = \frac{2\pi}{T}\vec{n}$ for $n_i \in \mathbb{Z}$

• Momentum integrals \Rightarrow mode sums

$$\int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 - m_\pi^2 + i\epsilon} \to \int \frac{dk_0}{2\pi L^3} \sum_{\vec{k}} \frac{1}{k_0^2 - |\vec{k}|^2 - m_\pi^2 + i\epsilon} \\ \to \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 - m_\pi^2 + i\epsilon} + \frac{m_\pi^2}{4\pi^2} \sum_{\vec{n} \neq \vec{0}} \frac{1}{|\vec{n}|L} K_1(|\vec{n}|m_\pi L)$$
Poisson summation $\sum_{\vec{n}} \delta^{(3)}(\vec{y} - \vec{n}) = \sum_{\vec{m}} e^{2\pi i \vec{n} \cdot \vec{y}} \qquad m_\pi L \to \infty \quad \sqrt{m_\pi/32\pi^3 L^3} \exp(-m_\pi L)$

Volume Dependence: Proton

Physical calculations

- Rigourous QCD results from unphysical calculations
- SU(3) electric charge matrix traceless:

 $\operatorname{diag}\{q_u, q_d, q_s\}$

 $\operatorname{diag}\{q_u, q_d, q_s, q_j, q_l, q_r, q_u, q_d, q_s\}$

- Turn sea charges off (unphysical hadrons)
 Still traceless: measure LECs
- Reconstruct some physical pols. using PQ χ PT: $\beta_P - \beta_n, \beta_{\Sigma^+} - \beta_{\Sigma^0}, \beta_{\pi^+}, ...$

• Errors are higher order in χPT

Physical calculations

- Rigourous QCD results from unphysical calculations
- SU(3) electric charge matrix traceless:

diag{ $q_u, q_d, q_s, 0, 0, 0, q_u, q_d, q_s$ }

 $\operatorname{diag}\{q_u, q_d, q_s\}$

- Turn sea charges off (unphysical hadrons)
 Still traceless: measure LECs
- Reconstruct some physical pols. using PQ χ PT: $\beta_P - \beta_n, \beta_{\Sigma^+} - \beta_{\Sigma^0}, \beta_{\pi^+}, ...$
- Errors are higher order in χPT

Example: $\alpha_{P} - \alpha_{n}$

- $\alpha_p = \alpha_{loop}^{NLO} + \alpha_{loop}^{NNLO} + \alpha_{ct}^{NLLO} + \dots$
- Loop contributions are known functions of quark charges: easy to fix unphysical charges
- NNLO c.t.s come from tree level insertions of

 $\mathcal{L}_{ct} = \mathbf{E}^2 \left\{ a_{\alpha_E} \operatorname{str}[\overline{B}\mathcal{Q}^2 B] + b_{\alpha_E} \operatorname{str}[\overline{B}\mathcal{Q}B] \operatorname{str}[\mathcal{Q}] + c_{\alpha_E} \operatorname{str}[\overline{B}B] \operatorname{str}[\mathcal{Q}^2] \right\}$

- Chargeless sea simulations insensitive to c_{α_E} but no contribution to $\alpha_p \alpha_n$
- Errors at N³LO: $\mathbf{E}^2 \operatorname{str}[\overline{B}m_q B]\operatorname{str}[\mathcal{Q}^2]$

Physics from PQ2PT

Individual pion pols safe to N³LO

- also in SU(4|2)
- Given convergence of SU(6|3) chiral expansion
 - "Isovector" combinations of baryon pols.
 - Eg: $\beta_{P} \beta_{n}$, $\beta_{\Sigma^{+}} \beta_{\Sigma^{-}}$
 - Errors are $N^{3(4)}LO$ in χPT

Preliminary QCD calcs

- Computing combinations of QCD polarisabilities using USQCD resources
 - Two other groups in USQCD also using BF methods
- Clover on DWF lattices from RBC/UKQCD: 16³x32 (1.9 fm) m_π=400 MeV 24³x64 (2.7 fm) m_π=330, 420 MeV
- Tunings done and various 16³x32 external fields run
- Investigate effects of non quantisation

π + polarisabilities

Acceleration? slope linear in E, offset quadratic in E

Lattice polarisabilities

- All EM and spin polarisabilities can be measured with external fields
- Large volume effects and strong mass dependence require large volumes and small masses
- Higher order and generalised polarisabilities [(doubly)virtual Compton scattering] are also measurable