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QCD is key part of SM but quark confinement tricky
Lattice QCD enables calcn of QCD 
effects “from first principles”. Done 
by numerical evaln of Path Integral in 
a 4-d vol. of space-time defined as a 
lattice

RECIPE
• Generate sets of gluon fields that 
contribute most to the PI
• Calculate averaged “hadron 
correlators” on these and fit to obtain 
masses and simple matrix elements

Z
dAµe−LQCDO(Aµ)

a
• Fix       and determine      to get 
physical results 

amq



Where can lattice QCD have most immediate impact?
Precision calculations of electroweak decay rates for gold-
plated hadrons            CKM physics

Vud Vus Vub
π→ lν K→ lν B→ πlν

K→ πlν
Vcd Vcs Vcb

D→ lν Ds→ lν B→ Dlν
D→ πlνD→ Klν
Vtd Vts Vtb

〈Bd|Bd〉 〈Bs|Bs〉



W
J = V0, Vi, A0, Ai

B π

Vub

I will concentrate on results relevant to this programme...

expt=(CKM)x(lattice calc.)

1

|VudV ∗
ub|

|VcdV ∗
cb|

|VtdV ∗
tb|

|VcdV ∗
cb|

Unitarity triangle - test this!



Why is lattice QCD so hard?
Handling light u,d, s quarks is a big headache 

Quarks must be ‘integrated out’
by inverting Dirac matrix M

Lq,QCD = ψ(γ ·D+m)ψ≡ ψMψ

valence quarks, calculate M−1

sea quarks, include
in importance sampling 
gluons 

det(M)

Cost inc. as mq→ 0
a→ 0 L→ ∞and also as



The story so far ....
Early days (before 2000) - u, d, s sea quarks omitted or 
inc. with u/d masses 10-20x too big. 
Systematic errors 10-20 % and theory not self-consistent
Now (since 2000) - possible to inc. u/d sea quarks with 
masses only 3-5x too large and extrapolate to real world. 
Improved staggered quark formalism first to do this since 
numerically very fast. Uses                       to reduce 4 
“tastes” to 1 flavor. 
2007 - improved staggered calculations have matured, 
many values of     and           from MILC collaborn.
Results using other formalisms now appearing
Future - looks good. Lots of analysis to be done ....

a mu/d

(det(M))0.25



Essential to check how lattice 
QCD is doing vs well-known 
gold-plated experimental 
quantities
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mBc New (HPQCD): Highly 
improved staggered quarks 
(HISQ) - improves disc. errors 
further over asqtad. Allows 
use for c quarks.

2007 results
latt
expt

Update of 2003 results (MILC/
FNAL/HPQCD) using improved 
staggered sea quarks.
Fix QCD params from:
ϒ(2S−1S),mπ,mK,mηc,mϒ
Quenched Approx. is dead!



Heavy (b,c) valence quarks in lattice QCD 

For light quarks, discretisation errors set by

mQa

ΛQCDa
For a≈ 0.1 fm (ΛQCDa)2 ≈ 0.06

For b, c quarks discretisation errors set by
a≈ 0.1 fm mca≈ 0.6, mba≈ 2.5

Discretise Dirac equation onto lattice

Lq,QCD = ψ(γ ·D+m)ψ≡ ψMψ
syst. errors

Multiple values of a allows fit and extrapolation to a= 0



For b quarks, use the fact that           is not a dynamical 
scale to write down an effective theory in which it is 
removed. 
Possibilities:  HQET, NRQCD, FNAL heavy quarks

Now disc. errors set by e.g (mom. in bound state)a

handles      and         

mba

ϒ B

For c quarks, have a choice of effective theory or beating 
down disc. errors in relativistic theory

FNAL/MILC use FNAL heavy (clover) quarks

NEW - HPQCD use Highly Improved Staggered Quarks 
as a relativistic method



How good a disc. needed for precise charm results?

mca≈ 0.4, (mca)2 ≈ 0.2, αs(mca)2 ≈ 0.06, (mca)4 ≈ 0.04
Remove all these errors by improved disc. and check this

Improved staggered quarks remove all tree-level a2 errors

+ + + + =

=
(Naik)

c5’c1 (Fat link)

c3’

c5 c7c3

Highly Improved 
Staggered Quarks 
(HISQ) reduce
further 
‘taste-changing’ 
errors in staggered 
formalism
very accurate



Excellent statistical accuracy from random wall sources
(as used by MILC for light mesons)
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Important tests e.g. using charmonium
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Removes errors at 
Follana et al, hep-lat/0610092

αs(mca)2, (mca)4



Compare charmonium and D spectrum
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Another key test of disc. errors since charmonium and D 
have different dynamics             more tests of lattice QCD 
possible. Same action as for u,d,s. 

Fix mc 

test D 
masses
vs expt.

E.Follana et al, 0706.1726[hep-lat]

lattice errors 6 MeV

using MILC 
configs with 
sea quarks



Will lead to a very accurate value for mc
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Since using same 
formalism for s 
and c can get 
accurate ratio of 
bare lattice quark 
masses. 
For accurate 
ratio need a 1-loop 
lattice perturbative 
calcn.
Lattice nonperturbative
methods also 
underway. 

MS



J=Aµ

B Wπ
leptonic decayπ

Br(π→ µν) ∝V 2ud f 2π

Γ(K→ µν)
Γ(π→ µν)

→ V 2us f 2K
V 2ud f 2π

HPQCD

Leptonic decay rate gives CKM element or test vs expt.

Using HISQ for valence 
u/d,s on MILC gives

E.Follana et al, 0706.1726[hep-lat]
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2007 New Results for D, Ds decay constants,
for comparison to experiment

Next two years: more lattice 
results and improved semileptonic 
form factors also ...
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• expt uses Vcs = Vud 
• error will improve to few % in 2 yrs
• not all em corrns calculated ..

Dx→ lν

2 v. different 
lattice calcs

Lattice inc u,d,s sea vs expt

241(3)MeV



b physics - B0 mixing and CKM constraint

B0 B0 =

HW

VtdV ∗
tb

f 2BBB
Parameterise with                
           where        is 
decay constant.

fB

ΔMx =
G2FM2

W
6π2 |V ∗

txVtb|2ηB2S0(xt)MBx f 2BxB̂Bx

Take exptl ratio from oscillation rates for Bs and Bd 

|Vtd
Vts

| = ξ

√
ΔMdMBs
ΔMsMBd

ξ=
fBs

√
BBs

fB
√
BB

,

calculate 
in lattice 
QCD,
renormln 
cancels
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Gamiz, LAT07

2007 New results for

Can compare to easier lattice calc. of fBs/ fB
HPQCD, hep-lat/0507015   1.20(3)
FNAL/MILC, Simone, LAT07   1.26(4)

ξ

√
MBs
MB

PRELIMINARY

inc. u, d, s sea quarks

fBs
√
B̂Bs = 0.281(21)GeV

HPQCD 
hep-lat/0610104

one value of a so far, 
main error is 
renormln of lattice 4-
q operator

NRQCD for b
FNAL for b

cf fDs/ fD = 1.164(11)



Semileptonic decay rates/form factors W
J = V0, Vi, A0, Ai

B
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Much harder “3-pt” calculation

q2 = m2D+m2K−2mDEK
D rest frame

dΓ
dq2

∝ |Vcs|2| f+(q2)|2

FNAL/MILC 
results compared 
to expt - theory 
error ~ 10%

Better precision 
needed for good 
lattice testShipsey: EPS07, 

FNAL/MILC: hep-ph/0408036



B excl. semileptonic decay and CKM constraint
Discretization errors
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FNAL/MILC
W

J = V0, Vi, A0, Ai

BB π,D,D∗, . . .

Vub,Vcb

B→ D∗lν

∝ |VcbF(1)|2
rate at zero recoil

F(1)

a2/ fm2

FNAL/MILC with u, d, s sea quarks, 3 values of a
F(1) = 0.930(12)(19) HFAG Vcb = 38.7(0.7)(0.9)×10−3

stat syst expt latt

B→ πlν Flynn+Nieves 0705.3553[hep-ph] combine lattice (HPQCD, 
FNAL/MILC) with LCSR, get Vub = 3.47(29)×10−3work underway to extend lattice results



Use lattice results 
with u, d, s sea quarks 
+ experiment 
for constraints on 
unitarity triangle.
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Lattice inputs 
(2+1 sea quarks):
BK
fK/ fπ f+(K→ πlν)
F(B→ D∗lν)
f+(B→ πlν)
fBs

√
BBs

fB
√
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Errors on lattice results should 
halve over next two years

,

Improve checks in D physics



Conclusions
• Lattice calculations inc. sea quarks are in excellent shape. 

• Significant new results this year in charm physics that 
now give accuracy similar to that for light hadrons

Future:
In next two years, lattice errors on CKM constraints should 
halve.
More checks will be done against gold-plated decays of D.
Precise values of mc and mb expected soon.

• Precision continues to improve for the staggered quark
formalism

• More work needed to improve b physics further. 


