

Chiral extrapolations of lattice QCD results

Gilberto Colangelo

⁵ UNIVERSITÄT BERN

Milos, September 10. 2007

Outline

Introduction

Masses and decay constants

Form factors

Scattering amplitudes

Summary and conclusions

Chiral extrapolations: an opportunity

- Extrapolations (the continuum, the chiral and the infinite volume) are rather an opportunity than a nuisance
- Especially the chiral extrapolation allows us to learn something about QCD which we can not get from phenomenology
- In doing this we also check the lattice calculations against some firm predictions of CHPT (the chiral logs)

Chiral extrapolations: an opportunity

- Extrapolations (the continuum, the chiral and the infinite volume) are rather an opportunity than a nuisance
- Especially the chiral extrapolation allows us to learn something about QCD which we can not get from phenomenology
- In doing this we also check the lattice calculations against some firm predictions of CHPT (the chiral logs)

But

- the chiral region may be rather small (we start entering it now)
- the necessary precision and control over systematic effects may be very high

Pion mass and decay constant

$$M_{\pi}^{2} = M^{2} \left\{ 1 - \frac{1}{2} x \ln \frac{\Lambda_{3}^{2}}{M^{2}} + \frac{17}{8} x^{2} \left(\ln \frac{\Lambda_{M}^{2}}{M^{2}} \right)^{2} + x^{2} k_{M} + O(x^{3}) \right\}$$

$$F_{\pi} = F \left\{ 1 + x \ln \frac{\Lambda_{4}^{2}}{M^{2}} - \frac{5}{4} x^{2} \left(\ln \frac{\Lambda_{F}^{2}}{M^{2}} \right)^{2} + x^{2} k_{F} + O(x^{3}) \right\}$$

where
$$x = \frac{M^2}{(4 \pi F)^2}$$
 $M^2 = 2Bm$

 $\Lambda_{3,4}$ are low energy constants (LEC) in form of energy scales:

$$\bar{\ell}_n = \ln \frac{\Lambda_n^2}{M_\pi^2} \qquad n = 1, \dots, 7$$

Pion mass and decay constant

$$M_{\pi}^{2} = M^{2} \left\{ 1 - \frac{1}{2} x \ln \frac{\Lambda_{3}^{2}}{M^{2}} + \frac{17}{8} x^{2} \left(\ln \frac{\Lambda_{M}^{2}}{M^{2}} \right)^{2} + x^{2} k_{M} + O(x^{3}) \right\}$$

$$F_{\pi} = F \left\{ 1 + x \ln \frac{\Lambda_{4}^{2}}{M^{2}} - \frac{5}{4} x^{2} \left(\ln \frac{\Lambda_{F}^{2}}{M^{2}} \right)^{2} + x^{2} k_{F} + O(x^{3}) \right\}$$

where
$$x = \frac{M^2}{(4 \pi F)^2}$$
 $M^2 = 2Bm$

 $\Lambda_{M,F}$ are combinations thereof

$$\ln \frac{\Lambda_M^2}{M^2} = \frac{1}{51} \left(28 \ln \frac{\Lambda_1^2}{M^2} + 32 \ln \frac{\Lambda_2^2}{M^2} - 9 \ln \frac{\Lambda_3^2}{M^2} + 49 \right)$$
$$\ln \frac{\Lambda_F^2}{M^2} = \frac{1}{30} \left(14 \ln \frac{\Lambda_1^2}{M^2} + 16 \ln \frac{\Lambda_2^2}{M^2} + 6 \ln \frac{\Lambda_3^2}{M^2} - 6 \ln \frac{\Lambda_4^2}{M^2} + 23 \right)$$

Pion mass and decay constant

$$M_{\pi}^{2} = M^{2} \left\{ 1 - \frac{1}{2} x \ln \frac{\Lambda_{3}^{2}}{M^{2}} + \frac{17}{8} x^{2} \left(\ln \frac{\Lambda_{M}^{2}}{M^{2}} \right)^{2} + x^{2} k_{M} + O(x^{3}) \right\}$$

$$F_{\pi} = F \left\{ 1 + x \ln \frac{\Lambda_{4}^{2}}{M^{2}} - \frac{5}{4} x^{2} \left(\ln \frac{\Lambda_{F}^{2}}{M^{2}} \right)^{2} + x^{2} k_{F} + O(x^{3}) \right\}$$

where
$$x = \frac{M^2}{(4 \pi F)^2}$$
 $M^2 = 2Bm$

and $k_{M,F} O(p^6)$ LEC

Pion mass and decay constant – Numerics

Numbers from the phenomenology:

 $F = 86.2 \pm 0.5 \text{ MeV}$

$$\begin{split} \bar{\ell}_1 &= -0.4 \pm 0.6 & \Leftrightarrow & \Lambda_1 = 0.12 \stackrel{+0.04}{_{-0.03}} \, \text{GeV} \\ \bar{\ell}_2 &= 4.3 \pm 0.1 & \Leftrightarrow & \Lambda_2 = 1.2 \pm 0.06 \, \text{GeV} \\ \bar{\ell}_3 &= 2.9 \pm 2.4 & \Leftrightarrow & \Lambda_3 = 0.6 \stackrel{+1.4}{_{-0.4}} \, \text{GeV} \\ \bar{\ell}_4 &= 4.4 \pm 0.2 & \Leftrightarrow & \Lambda_4 = 1.25 \stackrel{+0.15}{_{-0.13}} \, \text{GeV} \end{split}$$

From these, it follows:

$$\Lambda_M = 0.6 \stackrel{+0.18}{_{-0.15}} \text{GeV} \qquad \Lambda_F = 0.5 \stackrel{+0.16}{_{-0.13}} \text{GeV}$$

The NNLO LEC's k_F and k_M can only be roughly estimated

Pion mass and decay constant – Plots

From CG, Gasser, Leutwyler (01)

Pion mass and decay constant – Plots

Lattice data from Del Debbio et al.

Thanks to H. Leutwyler for the figure

Del Debbio et al. (06)

Del Debbio et al. (06)

Schierholz, talk at Lat07

 $r_0 f_0 = 0.192(3)$ $r_0 \Lambda_4 = 3.32(6)$

 $r_0 f_0 = 0.179(2) \quad r_0 \Lambda_4 = 3.32(6)$

Schierholz, talk at Lat07

Urbach, talk at Lat07

Pion-Sector: f_{PS} as function of the Quark Mass

- fit: $\chi^2/dof = 1.2$
- lattice spacings:

a(3.90) = 0.0855(5)(3) fm a(4.05) = 0.0666(6)(9) fm

using $f_{\pi} = 130.7$ MeV and $m_{\pi}^{0} = 135$ MeV [Aubin et al., 2004] $\rightarrow r_{0} = 0.441(14)(5)$ fm

Urbach, talk at Lat07

Noaki, talk at Lat07

Summary of recent lattice results

Summary of the lattice results from recent $N_f = 2$ simulations ('06,'07):

	F	$\Sigma^{\overline{\mathrm{MS}}}(2 \text{ GeV})$	7 ₃	74
	(MeV)	$(MeV)^3$		
Del Debbio et al			3.0(5)	
ETM	85.98(7)(21)(35)	266(6)(0)(6)	3.44(8)(26)(6)	4.61(4)(3)(7)
QCDSF/UKQCD	79(5)	273(12)	3.49(12)	4.69(14)
JLQCD	78.1(2.7)(1.2)	242(6)(6)	2.9(4)(1.6)	4.3(5)(2)

Talk by S. Necco at Lattice 07

Summary of recent lattice results

Results for $\overline{I}_3, \overline{I}_4$ from $N_f = 2$ simulations:

Talk by S. Necco at Lattice 07

Chiral predictions for a_0^0 and a_0^2

$$\begin{array}{rcl} a_0^0 &=& 0.220 \pm 0.001 + 0.027 \Delta_{r^2} - 0.0017 \Delta \ell_3 \\ 10 \cdot a_0^2 &=& -0.444 \pm 0.003 - 0.04 \Delta_{r^2} - 0.004 \Delta \ell_3 \end{array}$$

where

$$\langle r^2 \rangle_s = 0.61 \text{fm}^2 (1 + \Delta_{r^2}) \qquad \bar{\ell}_3 = 2.9 + \Delta \ell_3$$

with $\langle r^2 \rangle_s = \frac{3}{8\pi^2 F_{\pi}^2} \left\{ \bar{\ell}_4 - \frac{13}{12} + \xi \Delta_r + \mathcal{O}(\xi^2) \right\} \qquad \xi \equiv \left(\frac{M_{\pi}^2}{4\pi F_{\pi}^2} \right)$
Adding errors in quadrature $[\Delta_{r^2} = 6.5\%, \ \Delta \ell_3 = 2.4]$
 $a_0^0 = 0.220 \pm 0.005$
 $10 \cdot a_0^2 = -0.444 \pm 0.01$

$$a_0^0 - a_0^2 = 0.265 \pm 0.004$$

Chiral predictions for a_0^0 and a_0^2

The $\pi\pi$ S-wave scattering lengths plane

Sensitivity to the quark condensate

The constant $\bar{\ell}_3$ determines the NLO quark mass dependence of the pion mass

$$M_{\pi}^{2} = 2B\hat{m}\left[1 + \frac{2B\hat{m}}{16\pi F_{\pi}^{2}}\bar{\ell}_{3} + \mathcal{O}(\hat{m}^{2})\right]$$
$$\hat{m} = \frac{m_{u} + m_{d}}{2} \qquad B = -\frac{1}{F^{2}}\langle 0|\bar{q}q|0\rangle$$

Sensitivity to the quark condensate

The constant $\bar{\ell}_3$ determines the NLO quark mass dependence of the pion mass

$$M_{\pi}^{2} = 2B\hat{m}\left[1 + \frac{2B\hat{m}}{16\pi F_{\pi}^{2}}\bar{\ell}_{3} + \mathcal{O}(\hat{m}^{2})\right]$$
$$\hat{m} = \frac{m_{u} + m_{d}}{2} \qquad B = -\frac{1}{F^{2}}\langle 0|\bar{q}q|0\rangle$$

Its size tells us what fraction of the pion mass is given by the Gell-Mann–Oakes–Renner term

$$M_{\rm GMOR}^2 \equiv 2B\hat{m}$$

or how large is the quark condensate, the order parameter of chiral symmetry breaking – as emphasized since long by Jan Stern and collaborators

Sensitivity to the quark condensate

The E865 data on $K_{\ell 4}$ imply that

GC, Gasser and Leutwyler PRL (01)

 $M_{\rm GMOR} > 94\% M_{\pi}$

Recently confirmed by NA48 data on K_{e4} and $K \rightarrow 3\pi$

Masses and decay constants in SU(3)

$$\begin{split} M_{K}^{2} &= M_{K}^{0}{}^{2} \Biggl\{ 1 + \frac{2}{3} \mu_{\eta} + \frac{8M_{K}^{0}{}^{2}}{F_{0}^{2}} \left[(2L_{8}^{r} - L_{5}^{r}) + (2 + x_{\pi K}) \left(2L_{6}^{r} - L_{4}^{r} \right) \right. \\ &+ \mathcal{O} \left(M^{4} \right) \Biggr\} \\ F_{K} &= F_{0} \Biggl\{ 1 - \frac{3}{4} \mu_{\pi} - \frac{3}{2} \mu_{K} - \frac{3}{4} \mu_{\eta} + \frac{4M_{K}^{0}{}^{2}}{F_{0}^{2}} \left[L_{5}^{r} + (2 + x_{\pi K}) L_{4}^{r} \right] \\ &+ \mathcal{O} \left(M^{4} \right) \Biggr\} \end{split}$$

where

$$x_{\pi K} = \left(\frac{M_{\pi}^0}{M_{K}^0}\right)^2 \qquad \qquad \mu_P = \frac{M_P^2}{32\pi^2 F_P^2} \ln \frac{M_P^2}{\mu^2}$$

Masses and decay constants in SU(3)

$$M_{K}^{2} = M_{K}^{0^{2}} \Biggl\{ 1 + \frac{2}{3} \mu_{\eta} + \frac{8M_{K}^{0^{2}}}{F_{0}^{2}} \left[(2L_{8}^{r} - L_{5}^{r}) + (2 + x_{\pi K}) (2L_{6}^{r} - L_{4}^{r}) \right] + \mathcal{O} \left(M^{4} \right) \Biggr\}$$

$$F_{K} = F_{0} \Biggl\{ 1 - \frac{3}{4} \mu_{\pi} - \frac{3}{2} \mu_{K} - \frac{3}{4} \mu_{\eta} + \frac{4M_{K}^{0^{2}}}{F_{0}^{2}} \left[L_{5}^{r} + (2 + x_{\pi K}) L_{4}^{r} \right] + \mathcal{O} \left(M^{4} \right) \Biggr\}$$

Two-loop formulae for the *SU*(3) masses and decay constants are also available Bijnens et al.

Masses and decay constants in SU(3) – Numerics

New preliminary results from MILC, RBC-UKQCD and PACS-CS: L_i at the scale M_ρ

$LEC \cdot 10^3$	MILC	RBC-UKQCD	PACS-CS
$(2L_8 - L_5)$	0.3(1)(1)	0.247(45)	-0.23(5)
$(2L_6 - L_4)$	$0.3(1)\binom{+2}{-3}$	-0.02(42)	0.10(4)
L_4	$0.1(3)\binom{+3}{-1}$	0.136(80)	-0.02(11)
L_5	$1.4(2)\binom{+2}{-1}$	0.862(99)	1.47(15)

Talk by S. Necco at Lattice 07

Masses and decay constants in SU(3) – Numerics

New preliminary results from MILC, RBC-UKQCD and PACS-CS: L_i at the scale M_ρ

$LEC \cdot 10^3$	MILC	RBC-UKQCD	PACS-CS
$(2L_8 - L_5)$	0.3(1)(1)	0.247(45)	-0.23(5)
$(2L_6 - L_4)$	$0.3(1)\binom{+2}{-3}$	-0.02(42)	0.10(4)
L_4	$0.1(3)\binom{+3}{-1}$	0.136(80)	-0.02(11)
L_5	$1.4(2)\binom{+2}{-1}$	0.862(99)	1.47(15)

Talk by S. Necco at Lattice 07

cf. fits of Bijnens et al. (2000) $\begin{bmatrix} L_4^r \equiv L_6^r \equiv 0 \end{bmatrix}$ $\mathcal{O}(p^4): \qquad 2L_8^r - L_5^r \equiv 0.5 \cdot 10^{-3} \qquad L_8^r \equiv 1.0 \cdot 10^{-3}$ $\mathcal{O}(p^6): \qquad L_5^r \equiv (0.97 \pm 0.11) \cdot 10^{-3} \qquad L_8^r \equiv (0.60 \pm 0.18) \cdot 10^{-3}$

Masses and decay constants in SU(3) – Numerics

New preliminary results from MILC, RBC-UKQCD and PACS-CS: L_i at the scale M_ρ

$LEC \cdot 10^3$	MILC	RBC-UKQCD	PACS-CS
$(2L_8 - L_5)$	0.3(1)(1)	0.247(45)	-0.23(5)
$(2L_6 - L_4)$	$0.3(1)\binom{+2}{-3}$	-0.02(42)	0.10(4)
L_4	$0.1(3)\binom{+3}{-1}$	0.136(80)	-0.02(11)
L_5	$1.4(2)\binom{+2}{-1}$	0.862(99)	1.47(15)

Talk by S. Necco at Lattice 07

The exact values of L_4^r and L_6^r are important to establish what is the role of the strange quark in chiral symmetry breaking, and the m_s -dependence of quantities like F and the chiral condensate – surprises in the m_s expansion? cf. talk by S. Descotes-Genon at Lat07

Nucleon mass

Quark mass dependence known up to $\mathcal{O}(M^4)$:

$$m_N = m - 4c_1 M^2 - \frac{3g^2 M^3}{32\pi F^2} + \left[\tilde{e}_1 - \frac{3(2g^2 - c_2 m)}{8NF^2}\right] M^4 + \mathcal{O}(M^5)$$

The chiral log hidden in \tilde{e}_1 is known, but the LEC e_1^r not

Nucleon mass

Nucleon mass

- Provides a very good fit with m₀ = 0.875(10) GeV and c₁ = -1.231(17) GeV⁻¹ to be compared with c₁ = -0.9 GeV⁻¹ extracted from π - N-sigma term.
- Physical point, which is not included in the fit, is reproduced.

Alexandrou, talk at LAT07

Chiral expansion of pion form factors

$$\langle \pi^{i}(p_{1})|ar{q}\Gamma_{L}q|\pi^{j}(p_{2})
angle=C_{L}F_{L}(s)\qquad s=(p_{1}+p_{2})^{2}$$

$$\begin{array}{ll} L = S & \Rightarrow & \Gamma_S = 1 \;, \quad C_S = \delta^{ij} \\ L = V & \Rightarrow & \Gamma_V = \tau_3 \gamma_\mu \;, \quad C_V = i \epsilon^{i3j} (p_1 + p_2)_\mu \end{array}$$

Taylor expansion near s = 0:

$$F_L(s) = F_L(0) \left[1 + \frac{\langle r^2 \rangle_L}{6} s + \mathcal{O}(s^2) \right]$$

Chiral expansion of pion form factors

$$\langle \pi^{i}(\boldsymbol{p}_{1})|ar{q} \Gamma_{L} q|\pi^{j}(\boldsymbol{p}_{2})
angle = C_{L} F_{L}(s) \qquad s = (p_{1}+p_{2})^{2}$$

$$\begin{array}{ll} L = S & \Rightarrow & \Gamma_S = 1 \;, \quad C_S = \delta^{ij} \\ L = V & \Rightarrow & \Gamma_V = \tau_3 \gamma_\mu \;, \quad C_V = i \epsilon^{i3j} (p_1 + p_2)_\mu \end{array}$$

Taylor expansion near s = 0:

$$F_L(s) = F_L(0) \left[1 + \frac{\langle r^2 \rangle_L}{6} s + \mathcal{O}(s^2) \right]$$

Chiral expansion of the scalar radius:

$$\langle r^2 \rangle_{S} = 6\,\xi \left\{ \ln \frac{\Lambda_4^2}{M_{\pi}^2} - \frac{13}{12} - \frac{29}{18}\,\xi \left(\ln \frac{\Omega_S^2}{M_{\pi}^2} \right)^2 + \xi \,c_{\rm S} + \mathcal{O}(\xi^2) \right\}$$

LO: Gasser, Leutwyler (84) NLO: GC, Finkemeier, Urech(96), Bijnens, GC, Talavera (98)

Chiral extrapolation of $\langle r^2 \rangle_{S,V}$

Chiral extrapolation of $\langle r^2 \rangle_{S,V}$

Simula, talk at LAT07

Chiral extrapolation of $\langle r^2 \rangle_{S,V}$

Simula, talk at LAT07

πK vector form factor

In order to extract V_{us} from $K_{\ell 3}$ decays, information on the πK vector form factor at t = 0 is needed:

$$f_+^{\pi K}(0) = 1 + f_2 + f_4 + \mathcal{O}(p^6)$$

Ademollo-Gatto theorem \Rightarrow f_2 a known function of meson masses:

$$f_2 = -0.023$$
 Gasser and Leutwyler (85)

 $f_{+}^{\pi K}(0)$ also known to two loops Problem: determine the relevant LEC's

Post-Schilcher (01), Bijnens-Talavera (03)

$\pi \mathbf{K}$ vector form factor

Jüttner, talk at Lat07

πK vector form factor

Published results cover only 3 of four data points

 $f_{+}^{K\pi}(0) = 0.9609(51)$

 $|V_{us}| = 0.2257(9)_{\exp}(12)_{f_{+}(0)}$

- Lightest data point will enhance control of chiral limit
 - Data set complete ; final analysis & systematic estimates in progress
- Results very much favour Leutwyler-Roos with reduced error
- Big impact on V_{us}

Boyle, talk at Lat07

Accurate chiral extrapolation is essential – two-loop formulae complicated \Rightarrow close collaboration between lattice and chiral people

Nucleons: g_A Chiral expansion known up to $\mathcal{O}(M^3)$:

$$g_{A} = g + \left(4 ilde{d}_{16} - rac{g^{3}}{NF^{2}}
ight) M^{2} + rac{3(1+g^{2}) - 4m(c_{3} - 2c_{4})}{24\pi mF^{2}} gM^{3} + \mathcal{O}(M^{4})$$

Leading chiral logs at $\mathcal{O}(M^4)$ have also been evaluated

Bernard, Meißner (06)

However the chiral expansion behaves badly already for the physical value of the pion mass: Kambor, Mojziš (99)

$$rac{-4 m (c_3-2 c_4)}{24 \pi m F^2} M^3_{|_{M=0.14
m GeV}} \sim 12\%$$

Nucleons: g_A Chiral expansion known up to $\mathcal{O}(M^3)$:

$$g_{A} = g + \left(4 ilde{d}_{16} - rac{g^{3}}{NF^{2}}
ight) M^{2} + rac{3(1+g^{2}) - 4m(c_{3} - 2c_{4})}{24\pi mF^{2}} gM^{3} + \mathcal{O}(M^{4})$$

Leading chiral logs at $\mathcal{O}(M^4)$ have also been evaluated

Bernard, Meißner (06)

However the chiral expansion behaves badly already for the physical value of the pion mass: Kambor, Mojziš (99)

$$rac{-4 m (c_3-2 c_4)}{24 \pi m F^2} M^3_{|_{M=0.14 {
m GeV}}} \sim 12\%$$

Including the Δ as an explicit degree of freedom tames the growth of the M^3 term Hemmert, Procura, Weise (03) But at the price of a fine tuning

Nucleons: g_A

Nucleons: g_A

- finite volume effect on g_A at lightest mass?
- **9** Chiral limit: $g_A/g_V = 1.220(85)$ omitting lightest mass

Boyle, talk at Lat07

Introduction M and F F(s) A(s, t, u) Summary

Chiral extrapolation of a_0^0 and a_0^2

Formulae known to two loops Bijnens, GC, Ecker, Gasser and Sainio (95) Warning: chiral convergence of the $\pi\pi$ scattering lengths is bad The relevant mass scale is rather $2M_{\pi}$!

 $R_l = a_0^l/a_0^l(\mathrm{LO})$

GC, Gasser and Leutwyler (01)

Recent lattice calculations of a_0^2

Figure from NPLQCD, arXiv:0706.3026

cf. Talk by A. Walker-Loud

Recent lattice calculations of a_0^2

Figure from NPLQCD, arXiv:0706.3026

cf. Talk by A. Walker-Loud

Recent lattice calculations of a_0^2

Conclusions

- Recent progress in approaching the chiral region on the lattice is impressive
- Statistical errors on the low-energy constants determined on the lattice are tiny – we see already the enormous potential of the method
- Study of systematic effects (continuum extrapolation, finite volume, higher chiral orders) is only at the beginning Need to exclude that "the customer is always right" P.Boyle, Lat07
- (Near) future:
 - 1. make an effort community-wide to determine as accurately as possible the low-energy constants
 - 2. use this input in CHPT to describe the phenomenology \Rightarrow test of QCD
- a) ongoing discussion within the Flavianet Lattice Working Group – if you have ideas or proposals, they are most welcome: contact me or Rainer Sommer