# In medium hadronic properties: QCD in extreme conditions

Chris Allton Swansea University

## **Overview**

|                          | $T = \mu = 0$                    |
|--------------------------|----------------------------------|
| quarks are               | confined                         |
| accuracy of predictions: | < 5%                             |
| has similarities with:   | atomic physics<br>(bound states) |
| fundamental properties:  | masses &<br>transition mx els    |

## **Overview**

|                          | $T = \mu = 0$                    | $T \text{ or } \mu \neq 0$           |
|--------------------------|----------------------------------|--------------------------------------|
| quarks are               | confined                         | de-confined                          |
| accuracy of predictions: | < 5%                             | $\sim 20\%$                          |
| has similarities with:   | atomic physics<br>(bound states) | plasma/fluid<br>(spectral functions) |
| fundamental properties:  | masses &<br>transition mx els    | pressure, transport<br>coefficients  |

#### **Overview**

|                          | $T = \mu = 0$                    | $T \text{ or } \mu \neq 0$           |
|--------------------------|----------------------------------|--------------------------------------|
| quarks are               | confined                         | de-confined                          |
| accuracy of predictions: | < 5%                             | $\sim 20\%$                          |
| has similarities with:   | atomic physics<br>(bound states) | plasma/fluid<br>(spectral functions) |
| fundamental properties:  | masses &<br>transition mx els    | pressure, transport<br>coefficients  |

Need to change our preconceptions...

T = 0



T = 0



T = 0



## $H_2O$ phase diagram



## **QCD** phase diagram



## **Experiments of QCD at** $T \neq 0$

#### RHIC Experiment @ BNL



# **Experiments of QCD at** $T \neq 0$

#### RHIC Experiment @ BNL





First thought that quarks and gluons virtually free

- Now known that they are strongly interacting
  - Strongly Coupled Quark-Gluon Plasma

**T = 0 \rightarrow Bound states (hadrons)** 

 $\blacksquare T \neq 0 \longrightarrow resonances/melted states?$ 

 $J/\psi$  suppression [Matsui and Satz 1986]

i.e.  $c - \overline{c}$  pairs created early in collision can move apart before being able to form  $J/\psi$ 

Motivates the study of hadronic states/resonances

NOT weakly coupled...

Very low viscositysymptom of finite coupling

- NOT weakly coupled...
- Very low viscositysymptom of finite coupling



- NOT weakly coupled...
- Very low viscositysymptom of finite coupling





- NOT weakly coupled...
- Very low viscositysymptom of finite coupling





RHIC serves the Perfect Fluid

## ig-Noble aside

**2005 Ig-Nobel Prize for Physics** awarded to the "Pitch Drop" experiment by:

Profs. Mainstone and Parnell from the University of Queensland, Brisbane, Australia.

Pitch has viscosity  $10^{11}$  times water's...

**2005 Ig-Nobel Prize for Physics** awarded to the "Pitch Drop" experiment by:

Profs. Mainstone and Parnell from the University of Queensland, Brisbane, Australia.

Pitch has viscosity  $10^{11}$  times water's...



Weak coupling [Arnold, Moore and Yaffe]:

 $\eta/s \sim 1/g^4$ 

i.e. predicts large  $\eta$  (shear viscosity) (s = entropy density)

$$\mathbf{N} = 4 \text{ SYM} \Leftrightarrow \text{AdS}_5 \times \mathbf{S}^5 \text{ [Son, Starinets, Policastro, Kovtun]}$$
$$\eta/s \ge \frac{1}{4\pi}, \qquad N_c, \ g^2 N_c \to \infty$$

*i.e.* predicts small  $\eta$ 

(Conjectured lower bound for all matter)

Weak coupling [Arnold, Moore and Yaffe]:

 $\eta/s \sim 1/g^4$ 

i.e. predicts large  $\eta$  (shear viscosity) (s = entropy density)

$$\mathbb{I} \mathcal{N} = 4 \text{ SYM} \Leftrightarrow \text{AdS}_5 \times \mathbb{S}^5 \text{ [Son, Starinets, Policastro, Kovtun]}$$
$$\eta/s \ge \frac{1}{4\pi}, \qquad N_c, \ g^2 N_c \to \infty$$

*i.e.* predicts small  $\eta$ 

(Conjectured lower bound for all matter)

Finally string theory makes contact with nature...











transport coefficients from behaviour of spectral functions at  $\omega \to 0$ .

- **shear viscosity**  $\eta$ 
  - off-diagonal energy-momentum tensor
    - (gluonic correlators)
- **bulk viscosity**  $\zeta$ 
  - diagonal energy-momentum tensor
    - (gluonic correlators)
- **electrical conductivity**  $\sigma$ 
  - vector correlators
    - $(\psi \gamma_i \psi)$

#### $\eta, \zeta, \sigma \sim LOW ENERGY CONSTANTS$

## **Kubo Relations**

electrical conductivity:  $\sigma = \lim_{\omega \to 0} \frac{\rho_{x,x}(\omega)}{2\omega}$ 

shear viscosity:  $\eta = \lim_{\omega \to 0} \frac{\rho_{xy,xy}(\omega)}{2\omega}$ 

spectral densities:  $\rho_{\mu\nu}(\omega) = \int d^4x \langle [j_{\mu}(x), j_{\nu}(0)] \rangle_{eq}$ 

 $\rho_{\mu\nu,\sigma\tau}(\omega) = \int d^4x \, \langle [T_{\mu\nu}(x), T_{\sigma\tau}(0)] \rangle_{\text{eq}}$ 

where  $j_{\mu} = \overline{\psi} \gamma_{\mu} \psi = \text{EM current}, j_{\mu} = \overline{\psi} \gamma_{\mu} \psi = \text{EM current}$ 

i.e. transport coefficients ~ intercept of  $\rho(\omega)/\omega$  at  $\omega = 0$ 

## Summary - QCD at $T \neq 0$



cores of neutron stars & early universe physics

## Lattice input

Both:

•  $\omega \to 0$  physics (transport coefficients)

and

•  $\omega \neq 0$  physics (hadronic resonances)

are intrinsically non-perturbative and can be addressed by the lattice.

## Lattice input

Both:

 $\blacksquare \omega \rightarrow 0$  physics (transport coefficients)

and

•  $\omega \neq 0$  physics (hadronic resonances)

are intrinsically non-perturbative and can be addressed by the lattice.

Spectral functions can answer both:

- Do hadronic states persist in "quark-gluon" plasma phase?
- What are the transport coefficients?

## **Spectral Functions**

Euclidean(Lattice)CorrelatorKernel $\downarrow$  $\downarrow$  $G(t, \vec{p}) = \int \rho(\omega, \vec{p}) K(t, \omega) d\omega$ 

## **Spectral Functions**

Euclidean(Lattice)CorrelatorKernel $\downarrow$  $\downarrow$  $G(t, \vec{p}) = \int \rho(\omega, \vec{p}) K(t, \omega) d\omega$  $\downarrow$ SpectralFunction

## **Spectral Functions**

Euclidean(Lattice)CorrelatorKernel $\downarrow$  $\downarrow$  $G(t, \vec{p}) = \int \rho(\omega, \vec{p}) K(t, \omega) d\omega$  $\downarrow$ Spectral<br/>Function

where the (lattice) Kernel is:

$$K(t,\omega) = \frac{\cosh[\omega(t-N_t/2)]}{\sinh[\omega/(2T)]} \sim \exp[-\omega t]$$

## **Example Spectral Functions: Stable**



## **Example Spectral Functions: Decaying**



## **Example Spectral Functions: Melted**



## **Spectral Functions via MEM**

Extraction of a spectral density from a lattice correlator is an ill-posed problem:

- Given G(t) derive  $\rho(\omega)$
- More  $\omega$  data points then t data points!
- uses an SVD of the kernel to obtain working basis

Requires the use of Bayesian analysis - Maximum Entropy Method (MEM)

•  $P(\rho) = exp[-(\chi^2(\rho) - \alpha S(\rho))]$ 

- Takes prior information into account which includes some plausible "default model" for the spectral density
  used to normalise the entropy
- The result of the analysis must be stable under:
  - changes in the default model
  - sensible variations in time window ...
### **MEM Orientation**

### Typical MEM output:



 $\omega \to 0 \Longrightarrow$  transport coefficients  $\omega \neq 0 \Longrightarrow$  hadron states(?) Can be superimposed on effective mass plot:



### **Free Lattice Field Theory**



see G. Aarts and J.M. Martinez Resco, hep-lat/0507004

# Summary - QCD at $T \neq 0$



### Summary of rest of talk

- $\blacksquare \omega \rightarrow 0$ , i.e. transport coefficients
  - electrical conductivity [Swansea-Korea]
     modified MEM
  - shear viscosity [Meyer]
     two-step algorithm
- $\blacksquare \omega > 0$  , i.e. hadron resonances
  - Quenched [Swansea]
  - Dynamical [Swansea-Dublin]

SVD of kernel,  $K(t, \omega)$ :

$$G(t, \vec{p}) = \int \rho(\omega, \vec{p}) \ K(t, \omega) \ d\omega$$
  
where  $K(t, \omega) = \frac{\cosh[\omega(t - N_t/2)]}{\sinh[\omega/(2T)]} \sim \exp[-\omega t]$ 

But  $K(t, \omega) \sim 1/\omega$  divergent as  $\omega \to 0$ .

Define modified kernel & spectral function:

$$\overline{K}(t,\omega) = \frac{\omega}{2T} K(t,\omega), \quad \overline{\rho}(\omega) = \frac{2T}{\omega} \rho(\omega)$$
Note  $\int \rho(\omega, \vec{p}) K(t,\omega) d\omega \equiv \int \overline{\rho}(\omega, \vec{p}) \overline{K}(t,\omega) d\omega$   
and  $\overline{K}(t,\omega) \sim 1$  as  $\omega \to 0$ 

### **SVD** basis functions



divergent as  $\omega \to 0$ 

## **SVD** basis functions



divergent as  $\omega \to 0$ 

finite as  $\omega \to 0$ 

### Quenched, staggered QCD

■ Used *modified MEM* on vector channel  $\rightarrow$  $\sigma$  = conductivity

|          | eta   | $a^{-1}$ (GeV) | $N_{\sigma}^3 \times N_{\tau}$ | $T/T_c$ | # conf |
|----------|-------|----------------|--------------------------------|---------|--------|
| cold     | 6.5   | 4.04           | $48^3 \times 24$               | 0.62    | 100    |
| hot      | 7.192 | 9.72           | $64^3 \times 24$               | 1.5     | 100    |
| very hot | 7.192 | 9.72           | $64^3 \times 16$               | 2.25    | 50     |

#### **Collaborators:**

Gert Aarts, Justin Foley, Simon Hands, Seyong Kim

using cluster made up of undergraduate lab's PC's.

# **Spectral Function**



• melting of  $\rho$ 

**a** lattice artefact at  $\omega/T \sim 30$ 

### Conductivity



intercept robust to default model changes

intercept 
$$\longrightarrow \frac{\sigma}{T} = 0.4 \pm 0.1$$

Recall  $\eta$  from  $T_{\mu\nu}$ , i.e. gluonic correlation functions very noisy

Using:

- "two-level" algorithm
- **\blacksquare** model functions for  $\rho$

Meyer found:

- "robust upper bound:  $\eta/s < 1.0$
- quantitative values at  $T/T_c = 1.24 \& 1.65$

 $\blacksquare \omega \rightarrow 0$ , i.e. transport coefficients

- electrical conductivity [Swansea-Korea]
   modified MEM
- shear viscosity [Meyer]
   two-step algorithm

- $\blacksquare \omega > 0$ , i.e. hadron resonances
  - Quenched [Swansea]
  - Dynamical [Swansea-Dublin]



### **Quenched, Isotropic Study**



### **Collaborators**

Gert Aarts Justin Foley Simon Hands Seyong Kim Quenched, Isotropic, Staggered (and Clover)

#### COLD

Lattice spacing  $a \sim 0.05 \text{ fm} \rightarrow a^{-1} \sim 4 \text{ GeV}$ Volume  $N_s^3 \times N_t = 48^3 \times 24 \rightarrow T \sim \frac{1}{2}T_c$ 

#### HOT

Lattice spacing $a \sim 0.02 \text{ fm} \rightarrow a^{-1} \sim 10 \text{ GeV}$ Volume $N_s^3 \times N_t = 64^3 \times 24 \rightarrow T \sim 1.4T_c$ 

 $N_{cfg} = 100, am_q = 0.01, 0.05, 0.125$ 

Quenched, Isotropic, Staggered (and Clover)

#### COLD

Lattice spacing $a \sim 0.05 \text{ fm}$  $\rightarrow a^{-1} \sim 4 \text{ GeV}$ Volume $N_s^3 \times N_t = 48^3 \times 24$  $\rightarrow T \sim \frac{1}{2}T_c$ 

#### HOT

Lattice spacing $a \sim 0.02 \text{ fm} \rightarrow a^{-1} \sim 10 \text{ GeV}$ Volume $N_s^3 \times N_t = 64^3 \times 24 \rightarrow T \sim 1.4T_c$ 

 $N_{cfg} = 100, am_q = 0.01, 0.05, 0.125$ SELLING POINT: Many Different Momenta ...

### **Twisted Boundary Conditions**

### Twisted B.C.'s used to access many different momenta

Flynn et al., hep-lat/0506016, etc.

$$\psi\left(x_i + L\right) = e^{i\theta_i}\psi\left(x_i\right)$$

- Using fermion propagators for different twist angles  $\theta$  and  $\phi$  to construct a meson correlator with momentum  $\mathbf{p} = \frac{2\pi}{L_c} \mathbf{n} \frac{\theta \phi}{L_c}$
- Each twist requires an additional inversion of the fermion matrix per gauge configuration
   but 4 different twist angles and fourier transforms
  - $\rightarrow$  19 independent momenta

# **Annoying Fact of Life: Staggered Fermions**

- Correlator has a contribution from unwanted "staggered" partner
- In terms of the spectral functions the correlator is given by

$$G(t,\mathbf{p}) = \int_0^\infty \frac{d\omega}{2\pi} K(t,\omega) \left[\rho(\omega,\mathbf{p}) - (-1)^{t/a} \tilde{\rho}(\omega,\mathbf{p})\right]$$

- Perform independent MEM analysis on odd and even timeslices
- Add results to obtain the desired spectral function

Disadvantage - only half the available timeslices are used in each MEM analysis

# Correlator, G(t), below $T_c$

Both PS and Scalar @ 3 quark masses (Zero Momentum)



PS and Scalar non-degenerate

# Correlator, G(t), above $T_c$

In the deconfined phase, for the lightest quark mass, pseudoscalar and scalar correlators are degenerate



Restoration of Chiral Symmetry





 $\mathbf{p}L = 2.0, 3.14, 3.72, 4.25, 4.36, 5.2$ 

Corresponding plot above  $\mathrm{T}_{\mathrm{c}}$ 



Varying the momentum has a much smaller effect

Momentum dependence of the pseudoscalar spectral function below  $T_c$ 



 $\omega/T$ 

### Interpretation

- Moving bound state
- Dispersion relation yields a speed of light consistent with unity
- **Temporal extent only**  $\sim 1.2 \mathrm{fm}$
- Determination of the dispersion relation is not possible using conventional (maximum likelyhood) fits to exponentials

### **Vector Spectral Functions**



Comparison of vector spectral functions at zero momentum above and below  $\mathrm{T}_{\mathrm{c}}$ 

## **Dynamical, Anisotropic Study**



### **Collaborators**

Gert Aarts Bugras Oktay Mike Peardon Jon-Ivar Skullerud Have to fine-tune couplings so that both quarks and gluons feel the *same* anisotropy in both spatial and temporal directions...

For Quenched:  $\xi_g = f(\beta_s, \beta_t) \neq f(\xi_f^0)$ For Dynamical:  $\xi_g = f(\beta_s, \beta_t, m_s, m_t) = f(\xi_f^0)$ 

See TrinLat, hep-lat/0604021

Gluon Action: Improved anisotropic

Fermion Action: Wilson+Hamber-Wu + stout links

Gluon Action: Improved anisotropic

Fermion Action: Wilson+Hamber-Wu + stout links

| Light quarks     | $M_{\pi}/M_{ ho}$ | $\sim 0.5$                |                             |
|------------------|-------------------|---------------------------|-----------------------------|
| Anisotropy       | ξ                 | 6                         |                             |
| Lattice spacings | $a_t$             | $\sim 0.025~{\rm fm}$     |                             |
|                  | $a_s$             | $\sim 0.15~{\rm fm}$      |                             |
| Spatial Volume   | $N_s^3$           | $8^3$ (&12 <sup>3</sup> ) |                             |
| Temporal Extent  | $N_t$             | 16                        | $\rightarrow T \sim 2T_c$   |
|                  |                   | 24                        | $\rightarrow T \sim 1.3T_c$ |
|                  |                   | 32                        | $\rightarrow T \sim T_c$    |
| Statistics       | $N_{cfg}$         | $\sim 500$                |                             |

Gluon Action: Improved anisotropic

Fermion Action: Wilson+Hamber-Wu + stout links

| Light quarks     | $M_{\pi}/M_{ ho}$ | $\sim 0.5$                |                             |
|------------------|-------------------|---------------------------|-----------------------------|
| Anisotropy       | $\xi$             | 6                         |                             |
| Lattice spacings | $a_t$             | $\sim 0.025~{\rm fm}$     |                             |
|                  | $a_s$             | $\sim 0.15~{\rm fm}$      |                             |
| Spatial Volume   | $N_s^3$           | $8^3$ (&12 <sup>3</sup> ) |                             |
| Temporal Extent  | $N_t$             | 16                        | $\rightarrow T \sim 2T_c$   |
|                  |                   | 24                        | $\rightarrow T \sim 1.3T_c$ |
|                  |                   | 32                        | $\rightarrow T \sim T_c$    |
| Statistics       | $N_{cfg}$         | $\sim 500$                |                             |

#### SELLING POINT: DYNAMICAL + . Systematic Effects Studied

We have 4 channels (PS, Vector, Axial, Scalar)

We can vary:

- Energy resolution for MEM
- Start time for MEM)
- $m_c = 0.080 \text{ or } 0.092$
- Spatial Volume

We have 4 channels (PS, Vector, Axial, Scalar)

We can vary:

- Energy resolution for MEM
- Start time for MEM)
- $m_c = 0.080 \text{ or } 0.092$
- Spatial Volume

and:

• Temperature (i.e.  $N_t$ )

## Varying MEM's energy resolution


#### Varying MEM's start time



## **Varying** $m_c$

1.3  $T_c$  i.e.  $N_t = 24$  $8^3$ x24 Pseudoscalar



#### **Varying Spatial Volume**

 $N_s = 8 \text{ and } 12$ 



Pseudoscalar

Pseudoscalar ( $am_c = 0.080$ ,  $N_s = 8$ )



Vector (
$$am_c = 0.080$$
,  $N_s = 8$ )



(Spatial) Axial ( $am_c = 0.080, N_s = 8$ )



Scalar (
$$am_c = 0.080, N_s = 8$$
)



# Summary - Lattice QCD at $T \neq 0$



## Summary - Lattice QCD at $T \neq 0$



## **Summary/Conclusions**

- Improved MEM able to go to  $\omega \to 0$ 
  - estimates of conductivity,  $\sigma$
- Good resolution of spectral functions as T varied
  Quenched momentum variation also studied
  Dynamical anistropic lattice success!
- MEM results stable for sensible variations in MEM parameters
  - unphysical peak at the origin (?)
- Preliminary Results for Melting Temperature:
  - Pseudoscalar, Vector states melt between  $1.3 T_c$  and  $2 T_c$
- Still is work in progress ...

Thanks to:

Organisers!

The Dutch Passport Office...

Thanks to:

Organisers!

The Dutch Passport Office...