Single proton knock-out at JLab, MAMI, and MIT-Bates

S. Širca, U. of Ljubljana, Slovenia

Milos, Greece, 10 Sep 2007

Topics [the (e, e'p) **'hierarchy']**

⊳ Complex nuclei	• Limits of the impulse approximation
	Dynamical relativistic effects
	Nuclear transparency
	Short-range correlations \rightarrow J. Watson
	Connection to neutrino probes
	Medium modification of FFs \rightarrow S. Strauch, O. Buss
⊳ ⁴ He, ³ He	 Testing ground of few-body theories
	Benchmark experiments
	Breakdown of factorization at high $p_{ m m}$
	3-body mechanisms
	³ He ground-state WF components
	Triple polarization
⊳ Deuteron	• The nucleus we don't know well enough

2

Severe discrepancies even at low E

The A(e, e'N)A-1 alphabet

Complex nuclei

- Successes and limitations of experimental studies and theory
- ²⁰⁸Pb: textbook nucleus for MF approaches
- Exclusive (e, e'p) process probes different regions of interior ($0 \le l \le 5$)

 $E_{\rm m} = 0 \ (3s_{1/2}), \ 0.351 \ (2d_{3/2}), \ 1.348 \ (1h_{11/2}), \ 1.683 \ (2d_{5/2}), \ 3.470 \ {\rm MeV} \ (1g_{7/2})$

208 Pb(e, e'p) 207 Tl

JLAB E05-105

- Cross-sections to $p_{\rm m} \approx 500 \,{\rm MeV/c}$ and $A_{\rm LT}$ up to $p_{\rm m} \approx 300 \,{\rm MeV/c}$
- First time in true QE kinematics at fixed $(\omega, \vec{q}) = (430, 1000)$
- Origin of excess strength at high $p_{\rm m}$ LRC or relativity?
- Compare spectroscopic factors to those at lower Q^2

Nuclear transparency in (e, e'p)

• (Final-state) reduction of proton flux in (e, e'p) at high T_p

$$T_A(Q^2) = \frac{1}{\varepsilon^{\text{SRC}}(A)} \frac{\int_V d^3 p_{\text{m}} dE_{\text{m}} N^{\exp}(E_{\text{m}}, \vec{p}_{\text{m}})}{\int_V d^3 p_{\text{m}} dE_{\text{m}} N^{\text{calc}}(E_{\text{m}}, \vec{p}_{\text{m}})}$$
$$N^{\text{calc}} = N^{\text{PWIA}}, \quad \varepsilon^{\text{SRC}}(A) \neq 1$$
$$\text{better: } N^{\text{calc}} = (1-x)N^{\text{IPSM}} + xN^{\text{SRC}}, \quad \varepsilon^{\text{SRC}}(A) \equiv 1$$

• Validity of optical-potential vs. Glauber approaches for FSI

PRC **72** (2005) 054602 PRC **68** (2003) 064603

Correlated strength in $S(E_m, p_m)$ (MODEL) SEARCH FOR SRC

- correlations depopulate IP strength at low *E*, *k* (= E_m , p_m in PWIA)
- but also directly identifiable at high *E* ***and*** *k*, quasi-|| kinematics best bet
- ~ 80% of IP motion (CBF, NPA 505 (1989) 267)
- correlated strength 0.61 ± 0.06 (exp), 0.64 (CBF) in measured region (in terms of # protons)
 1.32 (CBF) total

• minor issue: measured and calculated S(E, k) differ

From A(e, e'p) **to** A(v, v'p)

- **RDWIA**: complex optical potentials for p A FSI
- **RMSGA**: Glauber multiple-scattering extension of eikonal + frozen approx
- goal: obtain FSI estimates for A(v, v'p) from transparency in A(e, e'p)

¹⁶O(e, e'p)n : continuum

• $d^6\sigma$, R_T , R_{L+TT} , R_{LT} measured for $25 \le E_m \le 120 \text{ MeV}$ and $p_m \le 340 \text{ MeV/c}$

PRC 70 (2004) 034606, PRL 86 (2001) 5670

JLAB E89-003

Enhancement of lower components of bound (and scattered) Dirac spinors crucial in description of A_{LT} , R_{LT}

PRC 70 (2004) 034606, PRL 84 (2000) 3265

$^{16}O(e,e'p)n$

JLAB E00-102

... work in progress

- low $p_{\rm m}$: data \approx 20% below full Faddeev (f(k) roughly accounts for FSI + MEC) ... now improving
- high $p_{\rm m}$: \approx correct $p_{\rm m}$ dependence
- (?) relativistic dynamics ($q \approx 700 \,\text{MeV/c}$)

PRL 93 (2004) 132301

MAMI/A1

³He(e, e'p)pn **on the QE peak**

- fixed $q = 1500 \,\mathrm{MeV/c}$, $\omega = 840 \,\mathrm{MeV}$
- $p_{\rm m}$ up to 1 GeV/c, $E_{\rm m}$ up to π threshold
- benchmark data (both channels)

• role of correlations (3bbu)

PRL 94 (2005) 082305

E89-044

${}^{3}\text{He}(e,e'p){}^{2}\text{H}$ on the QE peak

E89-044

- [same e⁻ kinematics] strong FSI for $150 \le p_{\rm m} \le 750 \,\text{MeV/c}$
- large discrepancies wrt theory near $p_{\rm m} = 1000 \, {\rm MeV/c}$
- *A*_{LT} shows breakdown of factorization (IF of PWIA & rescattering amps)

PRL **94** (2005) 192302 *** * *** see also nucl-th/0705.3951 (**unfactorized calculations !**)

FSI in ³He(e, e'p)²H at high p_m

• GEA: generalized eikonal approx (++rescatterings, A-1 excitation) \leftarrow FSI

k1

 \overline{p}_1

 \overline{p}_1

- Pisa WFs (AV18) ← initial-state correlations
- no MEC (small), no IC (small)
- **2bbu:** excellent agreement w/ GEA

• **3bbu:** data underestimated by $\approx 20\%$ at $p_m \gtrsim 800 \,\text{MeV/c}$ prl 95 (2005) 052502

... however

- particular 3-body mechanism at $p_{\rm m} \gtrsim 700 \,{\rm MeV/c}$
- maximal in QE kinematics (x = 1)
- connects to pd-elastic at $\theta = \pi$

PRC 72 (2005) 024001, PRC 72 (2005) 064003

3 He(e,e'p) 2 H and 3 He(e,e'p)pn

• 3NF, MEC negligible, FSI small in 2bbu, large in 3bbu

MAMI/A1

3 He(e,e'p)

- $Q^2 = 0.67$ at QE peak and on low- ω side
- non-relativistic calc no longer applicable
- relativistic kinematics + approximate FSI (*A*₂-term) sufficient

PLB 559 (2003) 41

3 He(e,e'd)

- better understand ³He as opposed to using it as effective n target
- any polarized ³He exp depends on this to some extent

S (90% WF) space symmetric, p ↑ p ↓
D (8.5% WF) tensor component of NN force
S' (1.5% WF) mixed symmetry config (spin-isospin)-space correlations

 \times protons partly polarized due to *S*' and *D* configs

• (iso)spin dependence of reaction mechanism (MEC, IC)

X_{Bjorken}

3 He(e, e'd) — Krakow/Bochum calculations

• sensitivity to small-WF components

E05-102

• no sensitivity to *S*′ in proton channel

Triple polarization 3 He(e,e'p)

• spin-dependent momentum distributions of $\vec{p}\vec{d}$ clusters in polarized ³He

MAMI/A1

Triple polarization 3 He(e, e'p)

- PWIA: $\sigma_{\rm L}$, $\sigma_{\rm T}$, $\sigma_{\rm T'}$ yield spin-dependent momentum distribution
- FSI, MEC preclude direct access except at $p_d \leq 2 \text{ fm}^{-1}$
- rich interplay \triangleright final-state symmetrization: large effect in C_3
 - \triangleright **FSI:** largest in C_2
 - \triangleright MEC: most prominent in C_1

d(e, e'p)

- experiments ~ self-consistent
- all are ~ 10% below theory

L/T separation in d(e, e'p)

- also L/T data from Mainz but experimental error at low $p_{\rm m}$
- discrepancies in L and T and no experimental program to address them

d(e, e'p) at high Q^2

E01-020

- $Q^2 = 0.8$, 2.1, 3.5 GeV² for $0 \leq p_{\rm m} \leq 500 \,{\rm MeV/c}$
- test Generalized Eikonal Approximation of FSI
- characteristic $heta_{nq}$ -dependence with predicted max. at 80°

PRELIMINARY EPJA 28 s01 (2006) 19 see also CLAS E94-019

Semi-inclusive deep-inelastic 2 H(e, e'p_s)X

- regions where FSI minimized \Rightarrow investigation of DIS structure functions
- regions where FSI maximized \Rightarrow study hadronization mechanisms

FSI in 2 H(e, e'p_s)X

$W = 2 \,\mathrm{GeV}$

nucl-th/0705.3617

Polarization observables in $\vec{y}d \rightarrow \vec{p}n$

- agreement w.r.t. theory for C'_x and C'_z but not for p_y
- but $\sigma(\theta)C'_{\chi} = 2 \operatorname{Re} \sum_{i=1}^{3} \left[F_{i,+}^* F_{i+3,-} + F_{i,-} F_{i+3,+}^* \right]$

 $\sigma(\theta) p_{\mathcal{Y}} = 2 \operatorname{Im} \sum_{i=1}^{3} \left[F_{i,+}^* F_{i+3,-} + F_{i,-} F_{i+3,+}^* \right]$

PRL **98** (2007) 182302 PRL **86** (2001) 2975

- clean up the mess in existing data, in particular on p_y
- input to (state-of-the-art) theory beyond $E_{\gamma} \sim 300 \,\text{MeV}$

Spin-correlation parameter A_{ed}^{V} **in** ${}^{2}\vec{H}(\vec{e}, e'p)$

Tensor analyzing power A_d^T **in** ${}^2\vec{H}(e, e'p)$

BLAST

$$\sigma = \sigma_0 \left\{ 1 + P_1^{d} A_d^{V} + P_2^{d} A_d^{T} + h \left(A_e + P_1^{d} A_{ed}^{V} + P_2^{d} A_{ed}^{T} \right) \right\}$$

PWIA: $A_d^{T} \propto \left(2R_0(p)R_2(p) + \sqrt{\frac{1}{2}}R_2(p)^2 \right) / \left(R_0(p)^2 + R_2(p)^2 \right)$

Conclusions and outlook

⊳ Complex nuclei	 Breakdown of factorization
	 Dynamical relativity
	 Q²-dependence of spectroscopic factors
	 Optical-potential vs. Glauber approaches to FSI
⊳ ³ He	• Unpolarized \approx OK except very high $p_{ m m}$
	• (e,e'd) vs. (e,e'p) correspondence (g.s. WF components)
	 Intricate interplay of FSI, MEC, IC
	 Triple polarization
⊳ Deuteron	 Unresolved discrepancies in XS, L/T responses
	• Simultaneous description of C'_x and p_y
	• Upcoming BLAST data on A_{ed}^{V} and A_{d}^{T}

• Pion and resonance physics with polarization

Dynamical relativity ("spinor distortion") in A(e, e'p)

$$\begin{bmatrix} \vec{\alpha} \cdot \vec{p} + \beta(M + S_{b}) + (V_{b} - E_{b}) \end{bmatrix} \Phi = 0 \quad \text{bound}$$
$$\begin{bmatrix} \vec{\alpha} \cdot \vec{p} + \beta(M + S_{c}) + (V_{c} - E_{c}) \end{bmatrix} \Psi = 0 \quad \text{continuum}$$

$$\Rightarrow \left[\nabla^2 + E^2 - M^2 - 2E\left(U^{\mathsf{C}} + U^{\mathsf{LS}}\vec{L}\cdot\vec{\sigma}\right)\right]\xi = 0$$

$$U^{\mathsf{C}} = V + \frac{M}{E}S + \frac{S^2 - V^2}{2E} + \frac{1}{2E}\left[-\frac{1}{2Dr^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2D'\right) + \frac{3}{4}\left(\frac{D'}{D}\right)^2\right]$$

$$U^{\mathsf{LS}} = -\frac{1}{2Er}\frac{D'}{D}$$

$$D(r) = 1 + \frac{S(r) - V(r)}{E + M}$$

$$\Phi = \Omega_{\rm b}\xi_{\rm b}, \quad \Psi = \Omega_{\rm c}\xi_{\rm c}, \qquad \Omega\left(\vec{p}, r\right) = \left(\frac{1}{\frac{\vec{\sigma} \cdot \vec{p}}{(E+M)D(r)}}\right) D^{1/2}(r)$$

PRC **72** (2005) 014602, PRC **71** (2005) 064610

$^{16}O(\vec{e}, e'\vec{p})$: polarization transfer

- quest for modification of proton FF inside the nuclear medium
- pol. observables least sensitive to most nuclear structure uncertainties

$$G_{\rm E,M}(Q^2,\rho) = G_{\rm E,M}^{\rm GK}(Q^2) \frac{G_{\rm E,M}^{\rm QMC}(Q^2,\rho)}{G_{\rm E,M}^{\rm QMC}(0,\rho)}$$

PRC 69 (2004) 034604

E05-102

- discrepancies in theories everyone believes in
- expected to run in 2008/09