Graal Apparatus

$\gamma+\mathrm{n}+(\mathrm{p}) \rightarrow \pi^{\circ}+\mathrm{n}+(\mathrm{p}) \quad \Delta \theta \vee \mathrm{s} \Delta \phi$

070904

$\gamma+n+(p) \rightarrow \pi^{0}+n+(p) E_{\text {cal }} / E_{\text {mis }} V s M M \eta$

central proton ecalceta/eeta vs missmass eta data

rmiss from eta vs ecalc eta/emeas eta

rmiss from eta vs ecalc eta/emeas eta

$\gamma+n+(p) \rightarrow \pi^{\circ}+n+(p) \quad q f n / q f p \quad 0.70-0.96 \mathrm{GeV}$

$\gamma+\mathrm{n}+(\mathrm{p}) \rightarrow \pi^{\circ}+\mathrm{n}+(\mathrm{p}) \quad$ qfn/qfp $\quad 0.99-1.23 \mathrm{GeV}$

\bigcirc free proton
quasi-free proton 070904

$\gamma+n+(p) \rightarrow \pi^{\circ}+n+(p) \quad q f n / q f p \quad 1.26-1.47 \mathrm{GeV}$

$\gamma+n+(p) \rightarrow \eta+n+(p) \Delta \theta / \Delta \phi$
 (a)

(c)

(d)

FIG. 1: Upper part: The correlation $\Delta \theta$ vs. $\left(\Delta \phi-180^{\circ}\right)$ in three-dimensional view(a) and its projection on two dimensions (b); Lower part: The bidimensional gaussian fit (c) and its projection on two dimensions (d).

$$
\begin{aligned}
& \gamma+n+(p) \rightarrow \eta+n+(p) E^{\eta}{ }_{\text {cal }} / E^{\eta}{ }_{\text {meas }} \\
& \text { (a) } \\
& \text { (b) }
\end{aligned}
$$

FIG. 2: The three-dimensional correlation $\mathrm{E}_{\eta}^{\text {calc }} / \mathrm{E}_{\eta}^{\text {meas }}$ vs. $\left(\mathrm{M}_{X}-\mathrm{M}_{N}\right)$ (a) (see text for explanation) and its projection on two dimensions (b).

FIG. 5: Left: Coplanarity between the η and the free proton (solid line) and the quasi-free proton (dotted line): the smearing between the two distributions is due to the Fermi motion; Right: The Fermi momentum distribution before (solid line) and after (dashed line) the application of the bidimensional cuts (see text for details).

FIG. 3: The η invariant mass without cuts (solid line) and with the kinematical cuts (dotted line) for a central proton (a) and neutron (b) (in logarithmic scale), for a forward proton (c) and neutron (d).

$$
\gamma+n+(p) \rightarrow \eta+n+(p) \cos (2 \phi)
$$

FIG. 4: The azimuthal distribution of the ratio (2) for the q.f. proton (a) and q.f. neutron (b) data in a fixed bin of E_{γ} and $\theta_{\eta}^{c m}$.

FIG. 6: Beam asymmetry Σ in η photoproduction on the quasi-free proton (open squares) in the deuteron and on the free proton (full circles)[2]. The energy value outside and inside parenthesis indicate the mean value of the bin for quasi free and free protons respectively. In dotted lines are illustrated the predictions of Maid2001 [7] for the free proton, in solid and dashed lines those for the quasi-free proton of Maid2001 [7] and the reggeized model [3], respectively (see text for details).

$$
070904
$$

EINN 2007

FIG. 8: Beam asymmetry Σ in η photoproduction on the quasi-free neutron in eleven energy bins, plotted as a function of the $\theta_{\eta}^{c m}$. In each plot, the mean γ energy of the bin is also indicated. In solid and dashed lines are illustrated the predictions for neutrons of Maid2001 and of the reggeized model respectively (see text for details).

$\gamma+n+(p) \rightarrow \eta+n+(p) \Sigma(\theta) q f n / q f p$

FIG. 9: Comparison between the beam asymmetry Σ in η photoproduction on the quasi-free proton (open squares) and the quasi-free neutron (full triangles) in the eleven energy bins, plotted as a function of the $\theta_{\eta}^{c m}$. See text for details.

FIG. 10: Comparison between the beam asymmetry Σ in η photoproduction on the quasi-free proton (open squares) and the quasi-free neutron (full triangles) in seven angular bins, plotted as a function of the γ energy (intervals of $\simeq 25 \mathrm{MeV}$ width.

$\gamma+n+(p) \rightarrow \eta+n+(p)$ Yield(E $\gamma)$

$\gamma+n+(p) \rightarrow \eta+n+(p)$ Yield(W)

FIG. 2: Total cross section of the reaction $\gamma p \rightarrow \eta \pi^{0} p$. The dots are the experimental data of this work. The open circles are from reference [9]. The results of the model of Ref. $[6,7]$ are given with their uncertainty by a hatched band of the figure. The uncertainty originates from the one on the $\gamma p \Delta(1700)$ coupling which was taken from the PDG [10]

FIG. 4: Beam asymmetry of the reaction $\gamma p \rightarrow \eta \pi^{0} p$. The theoretical results are calculated with the model of Ref. [6, 7]

Compton Scattering Kinematics

2. The maximum energy lost by the electrons after an elastic scattering with a laser photon is given by the maximum energy acquired by the photon:

$$
E_{e l}^{0}-E_{e l}^{s c a t t}=E_{\gamma \max }=\frac{4 \gamma^{2} E_{\text {laser }}}{1+\frac{4 \gamma E_{\text {laser }}}{m_{e}}} \approx 4 \gamma^{2} E_{\text {laser }}
$$

This energy loss is measured by the displacement d of the scattered electrons from the primary electron beam after the first magnetic dipole. For the ESRF electron energy of 6.03 GeV and a UV laser line of 3.53 eV , the energy loss is 1.487 GeV and corresponds to an electron displacement at the position of the Graal tagging detector: $\boldsymbol{d} \approx \mathbf{5 2 . 3} \mathbf{~ m m}$.
The microstrips of the Graal tagging detector measure the displacement \boldsymbol{d} of the scattered electrons from the main orbit and therefore the energy lost by the electrons (and acquired by the gamma-rays):

$E_{\gamma} \propto d$

Compton Scattering Kinematics

3. From the relativistic kinematics of Compton scattering:

$$
E_{\gamma \max }=\frac{4 \gamma^{2} E_{\text {laser }}}{1+\frac{4 \gamma E_{\text {laser }}}{m_{e}}} \approx 4 \gamma^{2} E_{\text {laser }} \quad \text { and } \quad \frac{d E_{\gamma}}{E_{\gamma}} \approx 2 \frac{d \gamma}{\gamma} \quad \text { or } \quad \frac{d \gamma}{\gamma} \approx \frac{1}{2} \frac{d E_{\gamma}}{E_{\gamma}}
$$

and in general from relativistic kinematics:

$$
\beta d \beta=\left(\frac{1}{\gamma^{2}}\right) \frac{d \gamma}{\gamma} \approx \frac{1}{2}\left(\frac{1}{\gamma^{2}}\right) \frac{d E_{\gamma}}{E_{\gamma}} \quad \text { or } \quad \Delta \beta \approx \frac{1}{2}\left(\frac{1}{\gamma^{2}}\right) \frac{\Delta E_{\gamma}}{E_{\gamma}}
$$

since at the ESRF:
we have:

$$
\gamma=\frac{E_{e}}{m_{e}}=\frac{6030}{0.511}=11800 ; \quad 2 \gamma^{2} \approx 2.8 \cdot 10^{8}
$$

$$
\Delta \beta \approx \frac{1}{2}\left(\frac{1}{\gamma^{2}}\right) \frac{\Delta E_{\gamma}}{E_{\gamma}} \approx \frac{1}{2,8 \cdot 10^{8}} \cdot \frac{\Delta E_{\gamma}}{E_{\gamma}} \approx 0.4 \cdot 10^{-8} \frac{\Delta E_{\gamma}}{E_{\gamma}} \approx 0.4 \cdot 10^{-8} \frac{\Delta d}{d}
$$

The error in β is reduced by eight orders of magnitude with respect to the relative error in \boldsymbol{d} (the displacement of the scattered electrons from the main orbit).

Graal Tagging Microstrips

Schematic description of the tagging detector in more details. Vertical cut: the electrons fly out of the screen.

Distribution of Graal Data

DATA $\mathrm{R} \mathrm{01p}<99.35-100.48>10.04 .1998-11.05 .2002$ (833-3920, Day 1493) 09.09.2004 15:50:41
POSITION: $1234567 \$ 9101112131415161718192021222324252627282930313233343536373839404142434445464748$

[^0]
Daily Compton Edges Distributions

Experimental data plotted as a function of (solar) hour, showing their daily variation. The dispersion of data around the average, taken arbitrarily at zero, is expressed in fractions of microstrip (300 micrometers width or about 7 MeV for one microstrip).

Same as the previous figure, but each point is the average over one hour. The dotted lines show the refill time of the machine corresponding to a possible change in the temperature of the tagging detector or the position of the beam. The average is expressed in microstrip fractions ($0.01=3 \mu \mathrm{~m}$).

070904
EINN 2007

Graal Beam Orientation on the Earth

Earth rotation around its axis: $\quad \omega=7.3 \cdot 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
Earth rotation around the sun: $\omega=2 \cdot 10^{-7} \mathrm{rad} \mathrm{s}^{-1}$

Graal Rotations and the CMB

Compton Edge Positions vs CMB Dipole

Experimental data plotted as a function of the azimuth (above); below, the variation of the angle between the beam and the CMB dipole decomposed to azimuth (dotted) and declination (dashed) angles is shown.

Preliminary Result

Assuming an error of

$$
2 \cdot 10^{-4}
$$

in our determination of the position of the Compton Edge, we could arrive to an estimated upper limit on the asymmetry of the velocity of light of:

$$
\Delta \beta \approx \frac{1}{2}\left(\frac{1}{\gamma^{2}}\right) \frac{\Delta E_{\gamma}}{E_{\gamma}} \approx 0.4 \cdot 10^{-8} \frac{\Delta d}{d} \approx 0.4 \cdot 10^{-8} \cdot 2 \cdot 10^{-4} \approx 10^{-12}
$$

Considering that we have analyzed old data and we have not been able to reconstruct completely the status of the system - accelerator + tagging detector - during our runs we have published the more conservative number:
$3 \cdot 10^{-12}$

An Optimistic View of the Future

In conclusion if optimistically we assume a systematic error of $2.5 \mu \mathrm{~m}$ in the distance between the position of the Compton Edge and the electron beam, we have:

$$
\frac{(\Delta d)_{s y s}}{d} \approx \frac{2.5 \mu \mathrm{~m}}{52.3 \mathrm{~mm}} \approx 5 \cdot 10^{-5} \approx \frac{\left(\Delta E_{\gamma}\right)_{s t a t}}{E_{\gamma}}
$$

and we can hope to be able to verify the isotropy of the velocity of light with respect to some absolute reference frame with a precision of:
$\Delta \beta \approx \frac{1}{2}\left(\frac{1}{\gamma^{2}}\right) \frac{\Delta E_{\gamma}}{E_{\gamma}} \approx 0.4 \cdot 10^{-8} \frac{\Delta E_{\gamma}}{E_{\gamma}} \approx 0.4 \cdot 10^{-8} \cdot 5 \cdot 10^{-5} \approx 2 \cdot 10^{-13}$

[^0]:

