GDH sum rule on the neutron

# Paolo Pedroni

#### INFN-Sezione di Pavia, Italy





## The GDH collaboration

J. Ahrens<sup>10</sup>, S. Altieri<sup>16,17</sup>, J.R. Annand<sup>7</sup>, G. Anton<sup>4</sup>, H.J. Arends<sup>10</sup>, K. Aulenbacher<sup>10</sup>, R. Beck<sup>10</sup>, M. Balckston<sup>3</sup>, C. Bradtke<sup>1</sup>, A. Braghieri<sup>16</sup>, N. d'Hose<sup>6</sup>, H. Dutz<sup>2</sup>, S. Goertz<sup>1</sup>, P. Grabmayr<sup>18</sup>, K. Hansen<sup>9</sup>, J. Harmsen<sup>1</sup>, S. Hasegawa<sup>14</sup>, T. Hasegawa<sup>12</sup>, E. Heid<sup>10</sup>, K. Helbing<sup>4</sup>, H. Holvoet<sup>5</sup>, L. Van Hoorebeke<sup>5</sup>, N. Horikawa<sup>15</sup>, T. Iwata<sup>14</sup>, P. Jennewein<sup>10</sup>, T. Kageya<sup>15</sup>, F. Klein<sup>3</sup>, R. Kondratiev<sup>13</sup>, J. Krimmer<sup>18</sup>, M. Lang<sup>10</sup>, B. Lannoy<sup>5</sup>, V. Lisin<sup>13</sup>, J. C. McGeorge<sup>7</sup>, A. Meier<sup>1</sup>, D. Menze<sup>2</sup>, W. Meyer<sup>1</sup>, T. Michel<sup>4</sup>, J. Naumann<sup>5</sup>, A. Panzeri<sup>16,17</sup>, P. Pedroni<sup>16</sup>, T. Pinelli<sup>16,17</sup>, I. Preobrajenski<sup>10,13</sup>, E. Radtke<sup>1</sup>, E. Reichert<sup>11</sup>, G. Reicherz<sup>1</sup>, Ch. Rohlof<sup>2</sup>, G. Rosner<sup>7</sup>, T. Rostomyan<sup>16</sup>, D. Ryckbosch<sup>5</sup>, B. Schoch<sup>2</sup>, M. Schumacher<sup>8</sup>, B. Seitz<sup>8</sup>, T. Speckner<sup>4</sup>, M. Steigerwald<sup>10</sup>, N. Takabayashi<sup>14</sup>, G. Tamas<sup>10</sup>, A. Thomas<sup>9</sup>, R. van de Vyver<sup>4</sup>, A. Wakai<sup>14</sup>, W. Weihofen<sup>8</sup>, H: Weller<sup>3</sup>, F. Zapadtka<sup>8</sup>, G. Zeitler<sup>3</sup>

<sup>1</sup>Institute of Experimental Physics, Ruhr-University, Bochum, Germany <sup>2</sup> Physics Institute, University of Bonn, Germany <sup>3</sup> Dept. of Physics-Duke University and TUNL, Durham, NC, USA <sup>4</sup> Physics Institute, University of Erlangen-Nuernberg, Erlangen, Germany <sup>5</sup> Nuclear Physics Laboratory, Gent, Belgium <sup>6</sup> CEA Saclay, DSM/DAPNIA/SPhN, Gif-sur-Yvette, France <sup>7</sup> Department of Physics & Astronomy, University of Glasgow, U.K. <sup>8</sup> II. Physics Institute, University of Goettingen, Germany <sup>9</sup> Department of Physics, University of Lund, Sweden <sup>10,11</sup> Institute of Nucl. Physics and Inst. of Physics, University of Mainz, Germany <sup>12</sup> Faculty of Engineering, Miyazaki University, Miyazaki, Japan <sup>13</sup> INR, Academy of Science, Moscow, Russia <sup>14,15</sup> Department of Physics and CIRSE, Nagoya University, Nagoya, Japan <sup>16,17</sup> INFN Sezione di Pavia and Dept. of Nucl. Physics of the University , Pavia, Italy <sup>18</sup> Physics Institute, University of Tuebingen, Germany



- Physics motivation
- Experimental set-up

$$\succ \text{Results} \quad \begin{cases} X \\ \vec{\gamma}\vec{d} \rightarrow \begin{cases} N\pi(\pi)N_{spect} \\ pn \end{cases}$$

## Conclusions

## Gerasimov-Drell-Hearn sum rule

Proposed in 1966 (and never verified up to now...)

Prediction on the absorption of circularly polarized photons by longitudinally polarized nucleons



# Why could the GDH sum rule be violated ?

> The only "weak" hypothesis is the assumption that Compton scattering  $\gamma N \rightarrow \gamma' N'$  becomes spin independent when  $\nu \rightarrow \infty$ 

> A violation of this assumption can not be easily explained

> Possible hypotheses for violation:

 $\checkmark$  Exchange of **a1**-like (J=1+) mesons between  $\gamma$  and N



✓ Non pointlike (constituent) quarks ?

Photoproduction of gravitons ?

#### GDH sum rule:

 $\checkmark$  Fundamental check of our knowledge of the  $\gamma N$  interaction

✓ Important comparison for photoreaction models

 ✓ Helicity dependence of partial channels (pion photoproduction) is an essential tool for the study of the baryon resonances (interference terms between different electromagnetic multipoles)

✓ Valid for any system with  $\mathbf{k} \neq 0$  (<sup>2</sup>H, <sup>3</sup>He). "Link" between nuclear and nucleon degrees of freedom

$$I_{GDH}^{deut} = \int_{2.2MeV}^{\infty} \frac{\sigma_p - \sigma_a}{E_{\gamma}} dE_{\gamma} = 0.6 \ \mu b \ll I_{GDH}^{proton} + I_{GDH}^{neutron} \ (\approx 430 \ \mu b)$$

AFS model

Arenhoevel, Fix, Schwamb, PRL 93, 202301 (04)



## Experimental status



# GDH sum rule on the proton

| E <sub>γ</sub> (GeV) |                | I <sub>GDH</sub> (mb) |
|----------------------|----------------|-----------------------|
| 0.14-0.20 *          | MAID03         | -29                   |
|                      | SAID04         | -28                   |
| 0.20-2.90            | Measured       | 254±5±12              |
|                      | (Mainz+Bonn)   |                       |
| > 2.90               | Simula et al.  | ~ -13                 |
| (Regge approach)     | Bianchi-Thomas | ~ -14                 |
| Total                |                | ~ 211                 |
| GDH sum rule         |                | 205                   |

\* Low energy theorems in the N $\pi$  threshold region (multipole analyses not very wrong ...)

# GDH sum rule: predictions (2005)

| Proton                                 | $I_{GDH}\left(\mu b ight)$ | Neutron                          | I <sub>GDH</sub> (µb) |
|----------------------------------------|----------------------------|----------------------------------|-----------------------|
| $\gamma \ p \to N \pi$                 | 172                        | $\gamma n \rightarrow N\pi$      | 133                   |
| $\gamma p \rightarrow N \pi \tau$      | τ 94                       | $\gamma n \rightarrow N\pi\pi$   | 82                    |
| $\gamma \: p \to N \eta$               | -8                         | $\gamma n \rightarrow N\eta$     | -6                    |
| $\gamma \; p \; \rightarrow K \Lambda$ | (Σ) -4                     | $\gamma n \rightarrow K \Lambda$ | (Σ) 2                 |
| $\gamma p \rightarrow N\rho(d)$        | ω) (ω                      | $\gamma n \rightarrow N\rho(e)$  | w) 2                  |
| Regge cont                             | rib. ~ -15                 | Regge cont                       | rib. ~ 20             |
| (E <sub>γ</sub> > 2 Gev)               |                            | (E <sub>γ</sub> > 2 Gev)         |                       |
| TOTAL                                  | ~ 240                      | TOTAL                            | ~ 230                 |
| GDH                                    | 205                        | GDH                              | 233                   |

 $N\pi$  : SAID  $K\Lambda(\Sigma)$  : Sumowidagdo et al., PRC 65,0321002 (02)

 $N_{\eta}$ : MAID  $N_{\pi\pi}$ : Fix, Arenhoevel EPJA 25, 114 (2005)

Np : Zhao et al., PRC 65, 032201 (03) Regge : Bianchi-Thomas , PLB 450, 439 (99)

## GDH sum rule on the neutron

#### > No Free neutron target available

- > Model dependent results from nuclear targets
- Experimental goal: have a "small" and "reliable" model dependence
- > Two different (and complementary) targets
  - =) Deuterium (deuterated butanol /<sup>6</sup>LiD) (
  - =) <sup>3</sup>He (high pressure gas target under development)
- > Measurement of partial channels like  $\vec{\gamma} \vec{d} \rightarrow pn$  $\vec{\gamma} \vec{d} \rightarrow p\pi^{-}p_{s} (n\pi^{+}n_{s}) (p\pi^{0}n_{s})$

Experimental set-up

- $\label{eq:main_states} \blacktriangleright \mbox{Tagged photon beam} \qquad \mbox{Mainz: } \mbox{$m_{\pi} \le E_{\gamma} \le 800 MeV$} \\ \mbox{Bonn: } 0.6 \mbox{ GeV} \le E_{\gamma} \le 2.9 \mbox{ GeV} \\ \end{tabular}$
- > Circularly polarized photons

from bremsstrahlung of linearly polarized electrons

> Longitudinally polarized protons and neutrons

Frozen spin (deut.)butanol/<sup>6</sup>LiD target (Bonn, Bochum, Nagoya)

- > Large acceptance hadron detector
- Mainz: DAPHNE detector (Pavia, Saclay) + forward angle detectors (Pavia, Mainz)
- Bonn: GDH Detector (Erlangen, Tuebingen, Gent)

## Total inclusive cross section on the deuteron



## Total inclusive cross section



### Total inclusive cross section on the deuteron



## GDH sum rule on the deuteron



Study of Partial channels



## Unpolarized cross sections





 $\pi^0 X(pn,d)$ 



 $\gamma d \rightarrow p \pi^{-} p_{s}$ 

 $(d\sigma/d\Omega) (\mu b/sr)$ 



 $\gamma d \rightarrow n \pi^+ n_s$ 

quasi -free reaction on the proton



 $\gamma d \rightarrow p \pi^0 n_s$ 



# **Double pion photoproduction**



## Helicity dependent cross sections

 $\sigma_{p} - \sigma_{a} (\mu b)$ 



 $\vec{\gamma} d \rightarrow p \pi^{-} p_{s}$ 







 $\vec{\gamma} d \rightarrow p \pi^0 p_s$ 



 $\vec{\gamma} d \rightarrow p \pi^- \pi^0 p_s$ 

quasi -free reaction on the neutron



Effects due to the intermediate excitation of the  $D_{13}(1520)$  resonance are much smaller than the AFS model predictions

 $\vec{\gamma} \vec{p} \rightarrow n\pi^+\pi^0$ 



 $\vec{\gamma} \, \vec{p} \rightarrow p \pi^+ \pi^-$ 



 $\vec{\gamma}d \rightarrow pn$ 



## Conclusions

> After a long "hunt" for the GDH sum rule, we are almost there ...

- -) proton : sum rule ~ verified
- -) neutron: first data available on the deuteron (nuclear corrections !)

Helicity dependent observables are a powerful (and essential) tool for a precise measurement of the baryon resonance properties

> At Mainz: CB@MAMI collaboration will improve/exend up to 1.5 GeV the  $N\pi(\pi)(N\eta)$  GDH data (two proposals rated "A" by the PAC)

>The game has just started .....



## Connection between resonances and multipoles



| Photon | Photon    |     |   | Pion | Pion            | Resonance              |
|--------|-----------|-----|---|------|-----------------|------------------------|
| L      | Multipole | J   | Ρ | π    | Multipole       |                        |
| 1      | E1        | 1/2 | - | 0    | E <sub>0+</sub> | <b>S</b> <sub>11</sub> |
|        |           | 3/2 | - | 2    | E <sub>2-</sub> | <b>D</b> <sub>13</sub> |
|        | <b>M1</b> | 1/2 | + | 1    | M <sub>1-</sub> | P <sub>11</sub>        |
|        |           | 3/2 | + | 1    | M <sub>1+</sub> | P <sub>33</sub>        |
| 2      | E2        | 3/2 | + | 1    | E <sub>1+</sub> | P <sub>33</sub>        |
|        |           | 5/2 | + | 3    | E <sub>3-</sub> | <b>F</b> <sub>15</sub> |
|        | <b>M2</b> | 3/2 | - | 2    | M <sub>2-</sub> | <b>D</b> <sub>13</sub> |
|        |           | 5/2 | - | 2    | M <sub>2+</sub> | <b>D</b> <sub>15</sub> |

> Unpolarized cross section

$$\sigma = |E_{0+}|^2 + |M_{1-}|^2 + 6|E_{1+}|^2 + 2|M_{1+}|^2 + 6|M_{2-}|^2 + 2|E_{2-}|^2 + \dots$$

Only the (few) most relevant multipoles can be accessed

#### Total photoabsorption cross section on the proton



> Helicity dependent cross section  $(\sigma_{3/2} - \sigma_{1/2})$ 

$$(\sigma_{3/2} - \sigma_{1/2}) = \left[ \left| E_{0+} \right|^2 \left| M_{1-} \right|^2 \left| 3 \left| E_{1+} \right|^2 + \left| M_{1+} \right|^2 - 6E_{1+}^* M_{1+} \right| + \left| 3 \left| M_{2-} \right|^2 + \left| E_{2-} \right|^2 + 6E_{2-}^* M_{2-} \right| + \dots \right]$$

Change of sign / Interference terms between multipoles

# Single pion photoproduction

Helicity dependence of the photoabsorption reactions



# **Deuteron Model**

Impulse Approximation + Final State Interaction



- NN : Paris potential, partial waves up to  $2s+1L_i = D_3$
- pN : model of S. Nozawa *et al.*, partial waves up to  $L_{2T2J} = D_{35}$

## Total inclusive cross section



(not feasible)
(inclusive method)

For each partial reaction channel, at least one reaction product has to be detected with (almost) complete acceptance (solid angle & efficiency)

- a) detector with a very high acceptance/particle detection efficiency (DAPHNE: 94% of 4π)
- b) Suppression of e.m. events (pair prod./Compton) at (pair prod./Compton) at



## Derivation of the GDH sum rule

> Forward ( $\vartheta$  =0) Compton scattering amplitude (Lorentz and gauge invariance)

$$f(\nu) = f_1(\nu)\vec{\varepsilon}_f \cdot \vec{\varepsilon}_i + f_2(\nu)\vec{\sigma} \cdot (\vec{\varepsilon}_f \times \vec{\varepsilon}_i)$$

Spin independent Spin dependent

 $(\vec{\varepsilon} = \text{photon polarization vector} \quad \sigma = \text{nucleon spinor})$ 

Dispersion relation without subtraction for the spin dependent part of the amplitude

$$\operatorname{Re} f_{2}(v) = \frac{2v}{\pi} \cdot \int_{0}^{\infty} \frac{\operatorname{Im} f_{2}(v')}{(v'^{2} - v^{2})} dv'$$

 $f_2 \rightarrow 0$  when  $\nu \rightarrow \infty$ 

#### > Optical theorem

Im 
$$f_2(\nu) = \frac{\nu}{8\pi} [\sigma_{1/2}(\nu) - \sigma_{3/2}(\nu)]$$

#### Low energy theorem

$$\lim_{\nu \to 0} f_2(\nu) = -\frac{\alpha}{2m^2} \kappa^2 \nu$$

$$\operatorname{Re} f_{2}(\nu) = \frac{2\nu}{\pi} \int_{0}^{\infty} \frac{\operatorname{Im} f_{2}(\nu')}{(\nu'^{2} - \nu^{2})} d\nu' \implies_{\nu \to 0} \int_{0}^{\infty} \frac{\sigma_{3/2}(\nu') - \sigma_{1/2}(\nu')}{\nu'} d\nu' = \frac{2\pi^{2}\alpha}{m^{2}} \kappa^{2}$$

# Why could the GDH sum rule be violated ?

- The only "weak" hypothesis is:  $f_2 \rightarrow 0$  when  $\nu \rightarrow \infty$
- Violation:

=) Im  $f_2(v) = (\sigma_{3/2} - \sigma_{1/2}) \rightarrow 0$  when  $v \rightarrow \infty$ (from Regge theory  $(\sigma_{3/2} - \sigma_{1/2}) \Rightarrow s^{-k}$ , k>0) =) Re  $f_2(v) \not\rightarrow 0$  when  $v \rightarrow \infty$ Compton scattering amplitude is spin dependent when  $\nu \rightarrow \infty$  $\gamma(q')$  $\gamma(q)$ Scattering amplitude has a fixed J=1+ pole in the t  $s \rightarrow$ channel  $f_{2}(0) = f_{2}(\infty) + \int_{0}^{\infty} \frac{\text{Im} f_{2}(\nu')}{\nu'} d\nu$ N(p)N(p')

> Exchange of  $a_1$ -like (J=1+) mesons between  $\gamma$  and N?



- Non pointlike (constituent) quarks ?
- > photoproduction of graviton ?



 $(d\sigma/d\Omega)$  (µb/sr)

## **Esclusive reactions**







 $\vec{\gamma} \, \vec{p} \rightarrow n \pi^+$ 





- SAID (FA04K)

MAID2003

different contributions from  $E_{0+}$ ,  $E_{2-}$  give now different model predictions





 $\vec{\gamma} \vec{p} \rightarrow p \pi^0 \pi^0$ 

