Hypernuclear Spectroscopy by Electron Scattering

- Hypernuclei: A quick introduction
- Electroproduction of hypernuclei
- 4 The experimental Program at Jefferson Lab
 - Overview of the Hall C Setup and Results
 - The Hall A Setup and Results in details
 - Future Program at JLab
- 🕹 Conclusions

Mauro Iodice INFN Roma Tre (Italy)

"Electromagnetic Studies of Nuclear Systems" EINN 2007 WORKSHOP Milos, Greece, September 10 - 2007

HYPERNUCLEI ...what they are

• Hypernuclei are bound states of nucleons with a strange baryon (Lambda hyperon). A hypernucleus is a "laboratory" to study nucleon-hyperon interaction (Λ -N interaction).

Extension of physics on N-N interaction to system with S≠0

HYPERNUCLEI and ASTROPHYSICS

• Strange baryons may appear in neutral β -stable matter through process like:

 $n + e^- \rightarrow \Sigma^- + \nu_e$

The presence of strange baryons in neutron stars strongly affect their properties. Example: mass-central density relation for a non-rotating (left) and a rotating (right) star

The effect strongly depends upon the poorly known interactions of strange baryons

More data needed to constrain theoretical models.

Hypernuclei – historical background - experimental techniques

- $1953 \rightarrow 1970$: hypernuclear identification with visualizing techniques emulsions, bubble chambers
- **1970** \rightarrow **Now** : Spectrometers at accelerators: CERN (up to 1980) BNL : (K⁻, π^-) and (K⁺, π^+) production methods KEK : (K⁻, π^-) and (K⁺, π^+) production methods
- > 2000 : Stopped kaons at DA Φ NE (FINUDA) : (K⁻_{stop}, π ⁻)

> 2000 : The new electromagnetic way : HYPERNUCLEAR production with ELECTRON BEAM at JLAB

Production of MIRROR hypernuclei

Elementary reaction

 $K^- + n \rightarrow \pi^- + \Lambda$

 $\pi^+ + n \rightarrow K^+ + \Lambda$

Elementary reaction

 $e + p \rightarrow e' + K^+ + \Lambda$

e.q.

on proton :

e.g.

on neutron :

Λ: I=0, q=0 ⇒ Λn = Λp

Spectroscopy of mirror hypernuclei reveal $\Lambda n \neq \Lambda p \Rightarrow \Lambda \Sigma^0$ mixing and $\Lambda N - \Sigma N$ coupling

What do we learn from hypernuclear spectroscopy **Hypernuclei** and the Λ -N interaction

"weak	coupling mo	del" J_{A-1} +	$\Lambda(s-shell)$	$\rightarrow J_{Hyp} = J_{A-1} \pm \frac{1}{2}$	
		(parent nucleus)	(A hyperon)	(doublet state)	
$V_{\Lambda N}$ =	= $V_0(r)$ +	$V_{\sigma}(\mathbf{r})\vec{\mathbf{s}}_{\Lambda}\cdot\vec{\mathbf{s}}_{\mathrm{N}} +$	$V_{\Lambda}(\mathbf{r})\vec{\ell}_{\Lambda N}\cdot\vec{\mathbf{s}}_{\Lambda}$	+ $V_N(\mathbf{r})\vec{\ell}_{\Lambda N}\cdot\vec{\mathbf{s}}_N$ +	$V_T(\mathbf{r})\mathbf{S}_{12}$
	V	Δ	S_Λ	S _N	Т

Each of the 5 radial integral (V, Δ , S_{Λ} , S_{N} , T) can be phenomenologically determined from the low lying level structure of p-shell hypernuclei

ELECTROproduction of Hypernuclei

• Hypernuclear physics accesses information on the nature of the force between nucleons and strange baryons, i.e. the Λ -N interaction. The nucleus provides a unique laboratory for studying such interaction.

The characteristics of the Jefferson Lab. electron beam, together with those of the experimental equipments, offer a unique opportunity to study hypernuclear spectroscopy via electromagnetic induced reactions. A new experimental approach: alternative to the hadronic induced reactions studied so far.

The experimental program at Jefferson Lab, in Hall A and in Hall C, has completed its first part of measurements, performing high-resolution hypernuclear spectroscopy on light (p-shell) and medium heavy targets

Different approach:

- > Hall C : Low Luminosity (thin targets low current) Large Acceptance
- Hall A : Small Acceptance High Luminosity

JLAB Hall C: The First Pioneer Experiment -Jlab E89-009 - The HNSS setup

Year 2000: The first generation experiment (E89-009, HNSS) on Carbon Target proved that (e,e'K+) hypernuclear study is possible with high quality electron beam at JLab.

JLAB Hall **C** Experimental setup - The Second Generation Exp. At Jlab - The **E01-011** setup

First step to medium heavy hypernuclei (²⁸Si, ¹²C, ⁷Li)

JLAB Hall **C** Experimental setup - The Second Generation Exp. At Jlab - The **E01-011** setup

First step to medium heavy hypernuclei (²⁸Si, ¹²C, ⁷Li)

JLAB Hall **C** Experimental setup - The Second Generation Exp. At Jlab - The **E01-011** setup

First step to medium heavy hypernuclei (²⁸Si, ¹²C, ⁷Li)

JLAB Hall C Future Experimental setup - The Third Generation Exp. **E05-115**: HKS + HES + New SPL

JLAB Hall A Experiment E94-107

E94107 COLLABORATION

A.Acha, H.Breuer, C.C.Chang, E.Cisbani, F.Cusanno, C.J.DeJager, R. De Leo, R.Feuerbach, S.Frullani, F.Garibaldi^{*}, D.Higinbotham, M.Iodice, L.Lagamba, J.LeRose, P.Markowitz, S.Marrone, R.Michaels, Y.Qiang, B.Reitz, G.M.Urciuoli, B.Wojtsekhowski, and the Hall A Collaboration

¹⁶O(e,e'K⁺)¹⁶_ΛN ¹²C(e,e'K⁺)¹²_ΛB ⁹Be(e,e'K⁺)⁹_ΛLi H(e,e'K⁺)Λ,Σ⁰
$$\begin{split} \mathsf{E}_{\mathsf{beam}} &= 4.016, \, 3.777, \, 3.656 \; \mathsf{GeV} \\ \mathsf{P}_{\mathsf{e}} &= 1.80, \, 1.57, \, 1.44 \; \mathsf{GeV/c} \qquad \mathsf{P}_{\mathsf{k}} &= \mathbf{1.96} \; \; \mathbf{GeV/c} \\ \theta_{\mathsf{e}} &= \theta_{\mathsf{K}} = \mathbf{6}^{\circ} \\ \mathcal{W} &\sim 2.2 \; \mathsf{GeV} \quad Q^2 &\sim 0.07 \; (\mathsf{GeV/c})^2 \\ \mathsf{Beam} \; \mathsf{current} : < 100 \; \mu \mathsf{A} \; \mathsf{Target} \; \mathsf{thickness} : \sim 100 \; \mathsf{mg/cm}^2 \\ \mathsf{Counting} \; \mathsf{Rates} &\sim \mathbf{0.1} - \mathbf{10} \; \mathsf{counts/peak/hour} \end{split}$$

JLAB Hall A Standard Experimental setup

The two High Resolution Spectrometer (HRS) in Hall A @ JLab

HRS - QDQ main characteristics:Momentum range:0.3, 4.0 GeV/c $\Delta p/p$ (FWHM): 10^{-4} Momentum accept.: $\pm 5 \%$ Solid angle:5 - 6 msrMinimum Angle: 12.5°

E94-107 collaboration added:

- 2 superconduction septa
- <u>Ring Imaging Cherenkov</u>

Experimental requirements :

Detection at very forward angle to obtain reasonable counting rate (increase photon flux) \rightarrow Septum magnets at 6°

• Excellent ParticleIDentification system for unambiguous *kaon* selection over a large background of $p, \pi \rightarrow \text{RICH}$

Accurate monitoring of many parameters over a long period of data taking : Beam energy spread and absolute calibration, spectrometers settings and stability, ...

• Excellent energy resolution \rightarrow Best performance for beam and HRS+Septa with accurate optics calibrations

```
1. \Delta E_{beam} / E : 2.5 \times 10^{-5}
```

2. $\Delta P/P$ (HRS + septum) ~ 10⁻⁴

```
Excitation energy resolution \leq 600 keV
```

3. Straggling, energy loss...

RICH detector – C_6F_{14}/CsI proximity focusing RICH

Rich – PID – Effect of 'Kaon selection':

Coincidence Time selecting kaons on Aerogels and on RICH:

Results on ¹²C target

Analysis of the reaction ${}^{12}C(e,e'K){}^{12}B_{\Lambda}$

Results published: M.Iodice et al., Phys. Rev. Lett. E052501, 99 (2007).

PHYSICAL REVIEW LETTERS

An experiment measuring electroproduction of hypernuclei has been performed in hall A at Jefferson Lab on a ¹²C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a ring imaging Cherenkov detector were added to the hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Thus, the observed $^{12}_{\Lambda}B$ spectrum shows for the first time identifiable strength in the core-excited region between the ground-state *s*-wave Λ peak and the 11 MeV *p*-wave Λ peak.

DOI:

PACS numbers: 21.80.+a, 21.60.Cs, 25.30.Rw, 27.20.+n

- BACKGROUND level is very low \Rightarrow Signal/Noise Ratio is very high
- Clear evidence of core excited peak levels between the grond state and the strongly populated p-Lambda peak at 11 MeV
- Quasi free K-Lambda production dominate the spectrum above 13 MeV

- Peak Search : Identified 6 regions with excess counts above background

Position (MeV)	Width (FWHM, MeV)	SNR	
0.0 ± 0.03	1.15 ± 0.18	19.7	
2.65 ± 0.10	0.95 ± 0.43	7.0	
5.92 ± 0.13	1.13 ± 0.29	5.3	
9.54 ± 0.16	0.93 ± 0.46	4.4	
10.93 ± 0.03	0.67 ± 0.15	20.0	

- Fit to the data: Fit 6 regions with 6 Voigt functions (convolution of Gaussian and Lorentzian) $\Rightarrow \chi^2_{/ndf} = 1.16$
- Theoretical model superimposed curve based on :
 - i) SLA $p(e,e'K+)\Lambda$ (elementary process)
 - ii) ΛN interaction from $^{7}{}_{\Lambda}Li \gamma$ -ray spectra

 12.36 ± 0.13 1.58 ± 0.29 7.3

	Exper	imenta	ıl data		Theoretical predi	ction	
Position	Width	SNR	Cross section	E_x	Main structure	J^{π}	Cross section
(MeV)	(FWHM, MeV)		(nb/sr ² /GeV)	(MeV)			(nb/sr ² /GeV)
0.0 ± 0.03	1.15 ± 0.18	19.7	$4.48\pm0.29(\text{stat})\pm0.63(\text{syst})$	0.0	$^{11}\mathrm{B}(^{\underline{3}-}_{\underline{2}};\mathrm{g.s.})\otimes s_{1/2\Lambda}$	1^{-}	1.02
				0.14	$^{11}\mathrm{B}(\underline{\!^{3-}_2};\mathrm{g.s.})\otimes s_{1/2\Lambda}$	2-	3.66
2.65 ± 0.10	0.95 ± 0.43	7.0	$0.75\pm0.16(\text{stat})\pm0.15(\text{syst})$	2.67	$^{11}\mathrm{B}(^{1-}_{2};2.12)\otimes s_{1/2\Lambda}$	1-	1.54
5.92 ± 0.13	1.13 ± 0.29	5.3	$0.45\pm0.13(\text{stat})\pm0.09(\text{syst})$	5.74	${}^{11}B(\frac{3}{2}^-; 5.02) \otimes s_{1/2\Lambda}$	2-	0.58
				5.85	${}^{11}\mathrm{B}(^{3-}_{\overline{2}}; 5.02)\otimes s_{1/2\Lambda}$	1-	0.18
9.54 ± 0.16	0.93 ± 0.46	4.4	$0.63 \pm 0.20 (stat) \pm 0.13 (syst)$				
10.93 ± 0.03	0.67 ± 0.15	20.0	$3.42\pm0.50(stat)\pm0.55(syst)$	10.48	${}^{11}\mathrm{B}(\frac{3}{2}^-; \mathrm{g.s.}) \otimes p_{3/2\Lambda}$	2+	0.24
				10.52	${}^{11}B(\frac{3}{2}; g.s.) \otimes p_{\Lambda}$	1^+	0.12
				10.98	${}^{11}B(\frac{3}{2}^-; g.s.) \otimes p_{1/2\Lambda}$	2+	1.43
				11.05	${}^{11}\mathrm{B}({}^{3-}_{2};\mathrm{g.s.})\otimes p_{3/2\Lambda}$	3+	2.19
12.36 ± 0.13	1.58 ± 0.29	7.3	$1.19\pm0.36(\text{stat})\pm0.35(\text{syst})$	12.95	${}^{11}\mathrm{B}({}^{1-}_{\overline{2}};2.12)\otimes p_{3/2\Lambda}$	2+	0.91
				13.05	${}^{11}\mathrm{B}(\!\tfrac{1-}{2};2.12)\otimes p_{\Lambda}$	1^{+}	0.27

 Measured cross sections in very good agreement with theory

E94-107 Hall A Experiment Vs. KEK-E369

E94-107 Hall A Experiment Vs. **FINUDA** (at $Da\Phi ne$)

E94-107 Hall A Experiment Vs. HallC E89-009

E94-107 Hall A Experiment Vs. HallC E01-011

 12 C(e,e'K) 12 B_{Λ}

 $^{12}C(e,e'K)^{12}B_{\Lambda}$

Results from the ⁹Be target

Analysis of the reaction ${}^{9}Be(e,e'K){}^{9}Li_{\Lambda}$ (very preliminary)

Preliminary Results on the WATERFALL target

Analysis of the reaction ${}^{16}O(e,e'K){}^{16}N_{\Lambda}$ and ${}^{1}H(e,e'K)\Lambda$ (elementary reaction)

the WATERFALL target: provides ¹⁶O and H targets

Preliminary Results on the WATERFALL target - ¹⁶O and H spectra

- > Fit to the data: Fit 4 regions with 4 Voigt functions $\Rightarrow \chi^2_{/ndf} = 1.19$
- \succ Theoretical model superimposed curve based on :
 - i) SLA $p(e,e'K+)\Lambda$ (elementary process)
 - ii) ΛN interaction fixed parameters from KEK and BNL ${}^{16}_{\Lambda}O$ spectra

Binding Energy B_{Λ} =13.57±0.25 MeV Measured for the first time with this level of accuracy (ambiguous interpretation from emulsion data; interaction involving Λ production on *n* more difficult to normalize)

Results on **H** target – The elementary process ${}^{1}H(e,e'K)\Lambda$

In all Jlab hypernuclear electroproduction experiments the K⁺ mesons are detected at very small (few degrees) laboratory scattering angels, at very low Q² (close to the photon-point).

This region of kaon scattering angles is not covered, unfortunately, even by recent very precise photoand electroproduction data on the elementary production process from CLAS, SAPHIR, and LEPS Collaborations.

In this kinematic region different models for the K⁺- Λ electromagnetic production on protons differ drastically.

This lack of relevant information about the elementary process makes an interpretation of obtained hypernuclear spectra difficult.

Results on **H** target – The $p(e,e'K)\Lambda$ Cross Section

Results on **H** target – The $p(e,e'K)\Lambda$ Cross Section

Results on **H** target – The $p(e,e'K)\Lambda$ Cross Section

Conclusions:

Successful program in Hypernuclear Spectroscopy by Electron Scattering at Jefferson Lab.

New experimental equipments showed excellent performance.

High quality data on ¹²C, ⁷Li and ²⁸Si (**¹²B**_{Λ}, ⁷He_{Λ} and ²⁸Al_{Λ} hypernuclei) have been taken in Hall C. ¹²C results published. Analysis in Progress.

* High quality data on ¹²C, ⁹Be and ¹⁶O targets (**¹²B**_{Λ}, ⁹Li_{Λ} and ¹⁶N_{Λ} hypernuclei) have been taken in **Hall A**. ¹²C results published. ¹⁶O paper in preparation. Analysis in Progress also for the important data on the elementary process $p(e,e'K)\Lambda$

VERY Promising physics is coming out from Jlab hypernuclear Program

✓ From present data

✓ From APPROVED Experiments