Nucleon Form Factors

Bogdan Wojtsekhowski

Jefferson Lab

Proton and Neutron FFs in space-like domain (focus on new development)

EINN-2007

Milos

September 12-15, 2007

Outline

• Introduction – EM FFs,

» New parameterizations

• Recent experimental results -

» low Q²» high Q²

• Theory links observations and ideas -

» Charge density» GPDs fit from FFs

- Experimental outlook GEP-III, ..., 12 GeV
- Summary

Reviews and Analysis

Ch. Hyde-Wright and C. de Jager, Ann. Rev. Nucl. Part.Sci. 54, 217 (2004)
H. Gao, Int. J. Mod. Phys A20, 1595 (2005)
Ch. Perdrisat, V. Punjabi, and M. Vanderhaeghen, hep-ph/06012014
J. Arrington, C.D. Roberts, and J.M. Zanotti, nucl-th/0611050

P. Bosted, PRC 64, 409 (1995) - Fit of pre-JLab data
E. Brash et al. PRC 65, 051001(R) 2002 - Fit with JLab GEP/GMP
J.J. Kelly, PRC 66, 065203 (2002) - Breit frame densities
BABB, arXiv:hep-ex 0708.1946 - Fit with local duality constraints
J. Arrington, W.Melnitchouk, J.A.Tjon, nucl-ex/0707.1861 - 2-gamma

M.Diehl et al., Eur.Phys.J. C39 (2005) 1–39, GPDs from FFs data M.Guidal et al., PRD 72, 054013 (2005), FFs from GPDs

Lepton-Nucleon scattering

$$l(k,h) + N(p,\lambda_N)
ightarrow l(k',h') + N(p'\lambda'_N)$$

Electro-Magnetic Form Factors

One-photon approximation, $\alpha_{em} = 1/137$, hadron current $\mathcal{J}^{\mu}_{hadronic} = ie\overline{N}(p') \left| \gamma^{\mu}F_1(Q^2) + rac{i\sigma^{\mu
u}q_{
u}}{2M}F_2(Q^2) \right| N(p)$ Rosenbluth (1950)

Full expression for M has three complex functions, F_{μ} , F_{2} , F_{3} Guichon & Vanderhaeghen

$$\mathcal{M} = rac{4\pilpha}{Q^2} ar{u}' \gamma_\mu u \cdot ar{N}' \left(ilde{F_1} \gamma^\mu - ilde{F_2} [\gamma^\mu, \gamma^
u] rac{q_
u}{4M} + ilde{F_3} K_
u \gamma^
u rac{P^\mu}{M^2}
ight) N$$
 Afanasev et al.

Blunden et al.

old $G_{E,M}$ are real functions of $t=-Q^2$

Extra terms contribute less than few % to $\sigma_{\rm R}$

 $ilde{G}_{\scriptscriptstyle M} = ilde{F}_1 + ilde{F}_2 \quad ilde{G}_{\scriptscriptstyle F} = ilde{F}_1 - au ilde{F}_2$ $ilde{F}_i$ are functions of (s-u) and t

 $d\sigma = d\sigma_{_{NS}}\left\{arepsilon(ilde{G}_{_E}+rac{s-u}{{}_AM^2} ilde{F}_3)^2 + au(ilde{G}_{_M}+arepsilonrac{s-u}{{}_AM^2} ilde{F}_3)^2
ight\}$

$$\begin{split} \boldsymbol{\sigma}_{\scriptscriptstyle R} &= \boldsymbol{\varepsilon} \boldsymbol{G}_{\scriptscriptstyle E}^2 + \boldsymbol{\tau} \boldsymbol{G}_{\scriptscriptstyle M}^2 + \\ &+ 2\boldsymbol{\tau} \boldsymbol{G}_{\scriptscriptstyle M} \mathcal{R} e \left(\delta \tilde{\boldsymbol{G}}_{\scriptscriptstyle M} + \boldsymbol{\varepsilon} \frac{s-u}{M^2} \tilde{F}_3 \right) + 2\boldsymbol{\varepsilon} \boldsymbol{G}_{\scriptscriptstyle E} \, \mathcal{R} e \left(\delta \tilde{\boldsymbol{G}}_{\scriptscriptstyle E} + \frac{s-u}{M^2} \tilde{F}_3 \right) \boldsymbol{\checkmark} \end{split}$$

Double Polarized Observables

 $N(\vec{e}, e'\vec{N})$

Akhiezer et al., (1958) Arnold et al., (1981) Vanderhaeghen (2003)

Two-photon correction, $\delta \sim 0.02$ at typical values $\varepsilon = 0.3 - :-0.8$

Similar result for polarized target case

Milos, EINN 2007

Kelly's Parameterization

Milos, EINN 2007

Duality constrained parameterization

8

FFs from GPDs

Guidal et al., PRD 72, 054013, (2005)

FFs from GPDs and test of the scaling behavior of the proton FFs

Form Factors at low Q^2

Friedrich&Walcher, EPJ (2003) have found a bump in all four FFs relatively to a two-dipoles fit

Belushkin et al, PRC (2007) get a good description of most data with dispersion analysis including meson continua

It will be very exciting to find deviation from DA fit => revived interest in precision experiments at Q^2 range below 1 GeV²

Milos, EINN 2007 Thomas Jefferson National Accelerator Facility B.Wojtsekhowski 10

Low Q² FFs from BLAST

Show a dip at 0.2 GeV^2

Milos, EINN 2007

Thomas Jefferson National Accelerator Facility

B.Wojtsekhowski 11

Low Q² GEP/GMP

A ratio less than unity in range from 0.2 to 0.5 GeV^2

Low Q² GMN inconsistency

A systematic difference of several % between results (\blacksquare \blacksquare) in Q² range 0.4 -:-0.8 GeV². A final analysis and paper from CLAS is coming soon. Reminder that at least two independent experiments are always needed.

Super ratio Rosenbluth

Milos, EINN 2007 Thomas Jefferson National Accelerator Facility B.Wojtsekhowski 14

Hall A GEN (E02-013)

G.Cates, N.Liyanage, and BW

Milos, EINN 2007Thomas Jefferson National Accelerator FacilityB.Wojtsekhowski15

High Q² GEN

✓ Since 1984, when Blankleider&Woloshin suggested ${}^{3}\dot{H}e(\vec{e},e'n)$, several experiments of this type have been performed at NIKHEF-K and Mainz (A1, A3) for Q² up to 0.7 GeV², a big success in part due to a new accurate 3-body calculation possible at low Q² (Glockle et al.)

 ✓ At Q² above 1-2 GeV² Glauber method becomes sufficiently accurate (Sarksian)

✓ Electron-polarized neutron luminosity and high polarization of ³He target made measurement about 10 times more effective than with ND₃. In combination with a large acceptance electron spectrometer the total enhancement is more than 100, which allows to reach 3.5 GeV^2

• Polarized target

Require super

- Electron spectrometer
- Neutron detector

Hall A GEN (E02-013)

E02-013 scheme

Polarized target

Polarization vs time for target cell ''Edna''

Rb + K mixture has shortened spin-up time to 5-8 hours. The hybrid method of optical pumping was used here for the first time in the nuclear target.

Electron Spectrometer

Useful $\Delta Q^2/Q^2 \sim 0.1$ with max Ω leads to a large aspect ratio, limited just of 30° for the polar. target. BigBite was designed at NIKHEF for aspect ratio $\Delta \theta / \Delta \phi = 1/5$. Spectrometer has solid angle up to 95 msr.

Neutron Detector

- Match BigBite solid angle for QE kinematics
- Flight distance ~ 10 m
- Operation at 3.10³⁷ cm²/s
- 1.6 x 5 m^2 active area
- 6-7 layers (~ 250 bars)
- 2 veto layers (~ 200)
- 0.38 ns time resolution

Data analysis

Observed Asymmetry for Quasi-elastic Neutrons

Asymmetry than corrected for

- 1. p-n misidentification
- 2. accidental events
- 3. A_{\parallel} contribution
- 4. FSI for e,e'n process
- 5. Target, beam polarizations

First physics result from Hall A GEN

- Result is well above Galster.
- Nuclear corrections include neutron polarization and estimate of Glauber (~5%).
- Present error (~20%) dominated by preliminary "neutron dilution factor", and is expected to be ~7% stat. and 8% syst. with further analysis.
- 3.4 GeV² result to be released in October DNP meeting at Newport News.

GPDs of nucleon

Müller (94), Ji (97), Radyushkin (97)

Quark dynamics of nucleon encoded in GPD functions $H(x,\xi,t), \tilde{H}(x,\xi,t)$ hadron helicity-conserving; vector and axial-vector $E(x,\xi,t)$, and $\tilde{E}(x,\xi,t)$ helicity-flipping; tensor and pseudo-scalar

Milos, EINN 2007 Thomas Jefferson National Accelerator Facility B.Wojtsekhowski 24

GPDs information

Ji's sum rule for quark orbital momentum

$$\langle \boldsymbol{L}_{v}^{q} \rangle = rac{1}{2} \int_{0}^{1} dx [x \boldsymbol{E}_{v}^{q}(x, \xi = 0, t = 0) + x q_{v}(x) - \Delta q_{v}(x)]$$

DVCS will access low t , large Q^{2} kinematics
FFs presently are the main source for \boldsymbol{E}_{v}^{q}

Model of GPD and Form Factors

Diehl et al (2005), Guidal et al (2005)

use all available data on G_M^p , G_M^n , G_E^p , G_E^n , F_A and CTEQ6 parametrization of q(x), $\Delta q(x)$ in order to determine $H_v^{u,d}$, $\tilde{H}_v^{u,d}$, $E_v^{u,d}$ ANSATZ: $H_v^q(x,t) = q_v(x) \exp [f_q(x)t]$ $f_q = [\alpha' \log(1/x) + B_q] (1-x)^{n+1}$ $+A_q x (1-x)^n$

fixed
$$\alpha' = 0.9 \ GeV^{-2}, n = 1, 2;$$

only A_q , and B_q parameters are fitted

Milos, EINN 2007

Thomas Jefferson National Accelerator Facility B.Wojtsekhowski 26

GPDs and impact parameter

Transverse momentum invariance allows frame independent Fourier transform from $H(x,\xi,t)$ to $q(x,\xi,b)$ with impact parameter b defined relative to center of momentum

Burkardt, Int. J. Mod. Phys. A 18, 173 (2003)

gives transverse size of quark (parton) with longitud. momentum fraction x

3-d picture of the nucleon

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs Structure functions, quark longitudinal momentum & helicity distributions

Nucleon Density from GPD

$$F_1(t) = \sum_q e_q \int dx H_q(x,t)$$
 Mul

Muller, Ji, Radyushkin

$$q(x,\mathrm{b})=\intrac{d^2q}{(2\pi)^2}e^{i\,\mathrm{q\cdot b}}H_{_q}(x,t=-\mathrm{q}^2)$$

M.Burkardt

$$ho(b)\equiv\sum_{q}e_{q}\int dx\;q(x,\mathrm{b})=\int d^{2}qF_{_{1}}(\mathrm{q}^{2})e^{i\;\mathrm{q}\cdot\mathrm{b}}$$

$$ho(b) = \int_0^\infty rac{Q \cdot dQ}{2\pi} J_0(Qb) rac{G_E(Q^2) + au G_M(Q^2)}{1+ au}$$

G.Miller, arXiv:0705.2409

center of momentum $R_{\perp} = \sum_{i} x_{i} \cdot r_{\perp,i}$ b is defined relative to R_{\perp}

Neutron is negative inside

G.Miller, arXiv:0705.2409 using FFs from Kelly's fit BBBA's fit

Does it contradict intuition ? Static picture: a neutron is a proton in the center plus π^-

Intuitive picture of static constituent quarks is not applicable for large Q² where quark DFs play role

- Negative density at low **b** in a neutron => <u>d</u> quarks dominate
- High Q² elastic process in Feynman mechanism requires a large x quark, so <u>d quarks dominate at large x</u>, in agreement with DIS

Nucleon models

See recent review Arrington, Roberts, Zanotti: nucl-th/0611050

Miller, since 2002, Spin densities in LF-Cloudy-Bag-Model lead to non-spherical shape of the proton.
Bhagwat et al., arXiv:nuclth/0610080, the Dyson-Schwinger equations used to calculate FFs

• Pasquini&Boffi, arXiv:0707.2897 developed nucleon-meson LFQCM and calculated many features of electroweak structure of the nucleon. GEN is sensitive to the % of S' component, find negative charge in the neutron at small impact parameter b

Milos, EINN 2007

GEP-III: G_{E}^{P}/G_{M}^{P} for 8.6 GeV²

Brash, Jones, Perdrisat, Punjabi

Milos, EINN 2007 Thomas

Focal Plane Polarimeter

$$\mu_p rac{G_E^p}{G_M^p} = -\mu_p rac{E_e+E_e'}{2M_p} an rac{ heta_e}{2} \left(rac{P_x^{fpp}}{P_y^{fpp}} \sin \chi_ heta + \gamma_p (\mu_p-1) \Delta \phi
ight)$$

Milos, EINN 2007

Near future: GMN-8 (for PAC33)

B.Quinn and BW

Milos, EINN 2007

GMN-14 with CLAS++

Gilfoyle, Brooks, Vineyard, Hafidi, Lachniet

GEP-15: G_{E}^{P}/G_{M}^{P} up to 15 GeV²

Perdrisat, Pentchev, Cisbani, Punjabi, BW

 $H(\vec{e}, e'\vec{p})$

Beam: 75 μ A, 85% polarization Target is 40 cm liquid H₂ Electron arm at 37°, covers Q² = 12.5 to 16 GeV² Proton arm at 14°, $\Omega \sim 35$ msr

58 days of production time resulting accuracy:

 $\Delta(\mu G^p_E/G^p_M)\,=\,\pm 0.10$

approved by PAC32 for 12 GeV program

GEP-15: Projected accuracy

 $\Delta(F_2/F_1)/(F_2/F_1)$ accuracy will be 3%

 $\Delta(\mu G_E^p/G_M^p) = \pm 0.10$

compare to
$$\frac{ln^2(Q^2=10/\Lambda^2)}{ln^2(Q^2=15/\Lambda^2)} = 0.85$$

Thomas Jefferson National Accelerator Facility B.Wojtsekhowski 37

Milos, EINN 2007

GMP-18: New measurement of G_M^P

Moffit, Gilad, Arrington, BW

The cross section of H(e,e')p.

By using two existing Hall A High Resolution Spectrometers with several new ideas for improved control of systematic.

With 11 GeV beam in 31-day run.

approved by PAC32 for 12 GeV program

Summary

Experiment and theory have created an improved basis for the understanding of the nucleon
 Future experiments will provide precision FFs data for Q² up to 7/14/15/18 GeV²
 The GPD approach, as expected, sheds light on the nucleon structure
 Lattice QCD results for FFs are simmering

It is an exciting time for nucleon FF physics, when we know a lot about FFs and are searching for QCD-based interpretation backup slides after this

Milos, EINN 2007

Perspective: G_E^n up to 7 GeV²

- 8.8 GeV 85% polarized beam => triple FOM
- Resolution σ_p/p for electron BNL magnet, GEM tracker => 3 times higher resolution
- He-3 cell in vacuum => lower background rate in neutron arm by a factor of 3
- Hybrid He-3 cell with narrow pumping laser line => 70% polarization

 G_E^n at 7 GeV² with uncertainty 15% of Miller's value in 30-days run

41

8.8 GeV at $23^{\circ} => 7 \text{ GeV}^{**2}$

128 inch

GEP-15: Proton Arm

- Magnet: 48D48 46 cm gap, 3 Tm field integral, 100 ton
- solid angle is 35 msr for GEP, could be ~70 msr at larger angle GEM chambers for tracking with 70 μ m resolution
- momentum resolution is 0.5% for 8.5 GeV/c proton
- angular resolution is 0.3 mrad
- trigger threshold is 4 GeV from hadron calorimeter

Calorimeter response for 10 GeV protons from test for Compass experiment

