



# Low energy tests of the Standard Model

#### Jens Erler

Instituto de Física Universidad Nacional Autónoma de México

Electromagnetic Interactions with Nucleons and Nuclei Milos, Greece, September 12, 2007





### Introduction

- Genergy Historically: low energy tests decisive to establish SM → Prescott (SLAC) experiment in polarized eD-DIS.
- Today: complex array of observables testing the SM and looking for and setting limits on extensions.
- Prospects: some fields on the verge of a revolution

- Collider complementarity (diagnostics)
- Discovery potential
- Examples include:
- scattering: ν-e, ν-N DIS, polarized Møller, elastic e-p, QE e-N, DIS e-N or μ-N
- β-decays: μ (Michel parameters), N, n, π, K
   (CKM first row unitarity)
- ▶ "single #" measurements: g−2 (e or µ), APV
- rare and SM forbidden processes: FCNC, EDM, LFV, p-decay, n-oscillations, νoscillations, 0νββ-decay

# Status of the Standard Model

### Parameters

- Yukawa sector: fermion masses, Cabibbo mixing, Kobayashi-Maskawa CP-violation
- Gauge couplings:  $\alpha$ ,  $\hat{\alpha}_s(M_Z)$ ,  $\sin^2 \theta_W \equiv \frac{g'^2}{q^2 + q'^2} = 1 - \frac{M_W^2}{M_Z^2}$
- Higgs potential:  $G_F, M_H$  $\Delta \alpha, \Delta G_F, \Delta M_Z \approx 0$
- $\alpha_s, M_H, m_t$  : electroweak precision data
- $m_b, m_c$ : QCD sum rules or lattice

#### EINN 2007



#### EINN 2007



## Strong coupling $\alpha_s(M_Z)(\tau_{\tau}) = 0.1225^{+0.0025}_{-0.0022}$ $\alpha_s(M_Z)(\text{all other}) = 0.1202 \pm 0.0027$

 $\alpha_s(M_Z)(\text{all}) = 0.1216 \pm 0.0017$ 

- slightly more precise than PDG world average
- less precise than lattice (Υ spectroscopy):
   2.2 σ disagreement
- hep-ph/0507078: I% error for τ decay value

# Polarized lepton scattering

→ Session on Parity Violation Friday afternoon

# Effective lepton-hadron Lagrangian $\mathcal{L}_{\rm NC}^{\ell h} = \frac{G_F}{\sqrt{2}} \sum \left[ C_{1q} \bar{\ell} \gamma^{\mu} \gamma_5 \ell \bar{q} \gamma_{\mu} q + \sqrt{2} \right]$ $C_{2q}\bar{\ell}\gamma^{\mu}\ell\bar{q}\gamma_{\mu}\gamma_{5}q + C_{3q}\bar{\ell}\gamma^{\mu}\gamma_{5}\ell\bar{q}\gamma_{\mu}\gamma_{5}q$ $C_{1q} = -T_3^q + 2Q_q \sin^2 \theta_W,$ $C_{2u} = -C_{2d} = -\frac{1}{2} + 2\sin^2\theta_W,$ $C_{3u} = -C_{3d} = \frac{1}{2}.$ $Q_W^p = 2C_{1u} + C_{1d} \sim -\frac{1}{2} + 2\sin^2\theta_W$

#### **PV-DIS**

$$A_{RL} = \frac{3G_F Q^2}{10\sqrt{2}\pi\alpha} [(2C_{1u} - C_{1d}) + g(y)(2C_{2u} - C_{2d})]$$

- eD-DIS experiment by Prescott et al. (SLAC) crucial to establish SM before W/Z were seen
- CERN-NA-004: μ-↑ μ+↓
- ILab @ 6 GeV & I2 GeV will improve SLAC and world average by factors of 54 and 17.
- Issues: higher twist / CSV; functions of  $Q^2$  / x.
- Limited by polarization and Q<sup>2</sup>-scale (0.5%).



# Møller asymmetry (E-158)

Q<sup>2</sup> = 0.026 GeV<sup>2</sup> (E = 45 & 48 GeV) P = 89 ± 4 %  $A_{PV} = (-1.31 \pm 0.14 \pm 0.10) \times 10^{-7}$ 

 $A_{PV} = -\mathcal{A}(Q^2, y)Q_W^e \Rightarrow Q_W^e = -0.0403 \pm 0.0053$ 

SM prediction: Czarnecki and Marciano  $\Rightarrow \sin^2 \hat{\theta}_W(M_Z) = 0.2330 \pm 0.0014$ 

compare: SLD: ± 0.00029, best LEP: ± 0.00028

With a future factor of 5 improvement (at JLab) would become world's best measurement

## Møller asymmetry



fixed target Møller @ ILC:  $\Delta \sin^2 \theta_W \sim 6 - 8 \times 10^{-5}$ 

Qweak

#### Similar Q<sup>2</sup> = 0.03 GeV<sup>2</sup> as E-158 but E = 1.165 GeV. P = 85 ± 1 % $A_{PV} = (-2.68 \pm 0.05 \pm 0.04) \times 10^{-7}$

$$A_{PV} = 9 \times 10^{-5} \text{GeV}(Q^2 Q_W^p + Q^4 B)$$
  

$$\Rightarrow \Delta Q_W^p = \pm 0.003$$
  

$$\Rightarrow \Delta \sin^2 \theta_W = \pm 0.0007$$

SM prediction: Marciano & Sirlin, Ramsey-Musolf & JE

#### **Proton and Electron Measurements Are Needed**



# Atomic Parity Violation

Need to understand atomic structure below %-level.

Most precise:  $Q_W(Cs) = -72.62 \pm 0.46$   $Q_W(Tl) = -116.4 \pm 3.64$ 

Wood et al., Bouchiat et al. Edwards et al., Vetter et al.

- Bi: ±1% experiment, Meekhof et al., but ±15% theory.
- Fr: ±1% theory, Orozaco et al., but ±10% experiment (atom trap).

### **APV: future directions**

- → Ba+ (Cs-like) ion trap: ±0.35%, Fortson et al.
- Yb isotope ratios: ±0.1% (mostly sensitive to Q<sub>W</sub>(p)), DeMille, Kimball, Stalnaker et al. (also Dy from solid state exp. Sushkov et al.)
- Problem: finite nuclear size effects (±0.1% from dominant neutron distributions) → improve experiment and theory on these
   or use APV to study nuclear structure.
- H, D slow meta-stable beams (from FELs?): ±0.3% in C<sub>1D</sub> (≈Qweak) & other C<sub>ij</sub>, Dunford, Holt, arXiv:0706.2407 [hep-ph]



# SM tests with $\mu \& V(\mu)$

# vN-DIS (NuTeV)

- NuTeV: 2.7  $\sigma$  (2nd largest deviation) in left coupling
- new QED radiative corrections (Diener, Dittmaier, Hollik) not yet included by NuTeV
- Valence parton Charge Symmetry Violation from "quark model" and "QED splitting" effects each predict removal of 1/3 of anomaly; phenomenological parton CSV PDFs can remove or double the effect (MRST)
- s-quark asymmetry:  $\int dx x (S-S-bar) = 0.0020 \pm 0.0014$  $\rightarrow 30 \pm 20\%$  of effect (NuTeV now agrees with CTEQ)
- nuclear effects: different for NC and CC; about ± 20% of effect, both signs possible (Brodsky, Schmidt, Yang)

# Muon anomalous magnetic moment

- 3.3 σ (?) deviation from SM (supersymmetry?)
- for 2-loop vacuum polarization contribution need optical theorem and same data as for running α and running weak mixing angle.
- inconsistencies between T and e+ e- data: if from CVC violation need enhancement factor
- inconsistencies among e+ e- annihilation data
- 3-loop light-by-light contribution

| Muon decay                                                                                                                                                       |     |             |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|--|--|--|--|--|
| $\tau_{\mu} = 2.197034 \ (18) \ \mu s$<br>(MuLan: ±24 µs, FAST: ±35 µs, previous: ±40 µs)<br>$\Rightarrow G_F = 1.166367 \ (5) \times 10^{-5} \ \text{GeV}^{-2}$ |     |             |  |  |  |  |  |
| Michel parameters                                                                                                                                                | SM  | TWIST       |  |  |  |  |  |
| (spectral shape)                                                                                                                                                 | 3/4 | 0.7508(10)  |  |  |  |  |  |
| δ (asymmetry shape)                                                                                                                                              | 3/4 | 0.7496(13)  |  |  |  |  |  |
| P(μ)ξ (asymmetry)                                                                                                                                                |     | 1.0003(38)  |  |  |  |  |  |
| η e-mass suppressed                                                                                                                                              | 0   | -0.0036(69) |  |  |  |  |  |
| global fit to all 9 (w/o v-detection) parameters<br>Gagliardi, Tribble & Williams (hep-ph/0509069)                                                               |     |             |  |  |  |  |  |

# CKM first row

 $|V_{ud}| = 0.97372 \ (10)_{uncorr.} \ (15)_{Coulomb} \ (19)_{SD}$ = 0.97372 \pm 0.00026 (nuclear \beta-decays)

Marciano & Sirlin, hep-ph/0510099 & KAON 07

|        | theory    | reference    | V(us)         |
|--------|-----------|--------------|---------------|
| K/π→μν | lattice   | HP/UKQCD     | 0.2262(4)(13) |
| K→πlv  | lattice   | RBC/ "       | 0.2255(5)(12) |
| τ      | sum rules | Gámiz et al. | 0.2165(26)(5) |
| all    |           |              | 0.2248(9)     |
| V(ud)  | unitarity | CKM          | 0.2277(11)    |

# CKM unitarity

#### $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.00132 \pm 0.00065$

- 2  $\sigma$  "unitarity deficit"
- future of V(ud): neutron decay (many new experiments); currently exp. discrepancies
- future of V(us): lattice (form factors, m(s))
- New physics: heavy fermion mixing, Z', W\* (KK), SUSY loops (but prefer excess); effect may be in µ-decay (normalization!)

 $\Lambda_{new} = \left\lceil \sqrt{2}G_F | 0.00065 | \right\rceil^{-1/2} \approx 10 \text{ TeV}$ 

# Rare and forbidden processes

$$0\nu\beta\beta$$
-decay (status)

• Inverted hierarchy:  $< m(\beta\beta) > ~ 20-50 \text{ meV}$ 

$$\Rightarrow T_{1/2} \sim 10^{27} y \Rightarrow \text{ rate } \sim \text{ few } / t y$$

- Heidelberg-Moscow (best) limit: < 0.35 eV
- Klapdor-Kleingrothaus et al. claim: 0.24-0.58 eV

 $\Rightarrow T_{1/2} \sim 10^{25} y \Rightarrow \text{ rate } \sim \text{ hundreds } / t y$ 

• nuclear matrix elements: extraction of  $<m(\beta\beta)>$  difficult

# 0vββ-decay (models)

- Majorana masses
- right-handed currents (no helicity flip)
- other lepton number violating (L#V) effects: heavy neutrinos, R-parity violating SUSY, leptoquarks, scalar bilinears
- To distinguish use other L#V observables, like µ→eγ decay, or µ→e conversion
   Cirigliano et al., PRL 93, 231802
- or produce corresponding particles at LHC

# 0vββ-decay (prospects)

- running: NEMO-3,
   CUORICINO (<m(ββ)> 0.4-1 eV)
- under construction: EXO-200, GERDA
- prototype: CANDLES, COBRA, XMASS
- proposed: CUORE, EXO, Majorana, MOON, SNO++, SuperNEMO
- details: Avignone III, Elliott, Engel, arXiv:0708.1033 [nucl-ex]

# CP violation & EDMs

- SM (CKM phase): Electric Dipole Moments ≠ 0, but tiny.
- QCD  $\theta$ -angle: constrained by neutron EDM
- Baryon Asymmetry of the Universe (BAU) requires new CP violating phases
- any CP phase should contribute to EDMs
- MSSM: EDMs large (why not seen?) unless small CP phases (but then BAU also small)

# EDMs (prospects)

- This tension EDMs ↔ BAU is quite modelindependent ⇒ finding EDMs ≠ 0 in future measurements (e.g., e, µ, n, atoms) "virtually guaranteed" (Paul Langacker)
- 2-4 orders of magnitude improvements (!) in next generation experiments
- → talk by Dominique Rebreyend on neutron EDM later this morning

### Conclusions

- Next generation of (relatively) low-energy experiments will challenge the SM and explore multi-TeV scales, in many cases beyond LHC reach
- LHC may be fatal for the SM, but not for low-energy precision measurements





Enjoy the conference and the island!

## Small deviations

|                                                             | value   | error  | SM      | pull | comment                    |
|-------------------------------------------------------------|---------|--------|---------|------|----------------------------|
| $\frac{10^9}{2}\left(g-2-\frac{\alpha}{\pi}\right)$         | 4511.07 | 0.80   | 4508.46 | 3.3  | no τ data                  |
| $g_L^2({ m NuTeV})$                                         | 0.3001  | 0.0014 | 0.3037  | 2.7  | QED, PDFs                  |
| $A^b_{FB}({ m LEP})$                                        | 0.0992  | 0.0016 | 0.1032  | 2.5  | best s <sup>2</sup> at LEP |
| $\sigma^{\boldsymbol{\theta}}_{\mathrm{had}}[\mathrm{nb}]$  | 41.541  | 0.037  | 41.466  | 2.0  | # v: 2.986(7)              |
| $A_{LR}(\mathrm{SLD})$                                      | 0.1514  | 0.0022 | 0.1473  | 1.9  | best s <sup>2</sup>        |
| $oldsymbol{R}_{ u}(	ext{CHARM})$                            | 0.3021  | 0.0041 | 0.3090  | 1.7  | sign of NuTeV              |
| $\sin^2 	heta_{W}^{	ext{eff.}}(	ext{FNAL})$                 | 0.2238  | 0.0050 | 0.2315  | 1.5  | first result               |
| $oldsymbol{A}_{oldsymbol{FB}}^{	au}(	ext{LEP})$             | 0.0188  | 0.0017 | 0.0163  | 1.5  | final result               |
| $oldsymbol{M}_{oldsymbol{W}}(oldsymbol{p}ar{oldsymbol{p}})$ | 80.428  | 0.037  | 80.374  | 1.5  | mostly CDF II              |