

Workshop on Hadron Physics on the Lattice Conveners: C. Alexandrou and C. Michael Summary

C. Alexandrou University of Cyprus

Hadron Physics on the Lattice, Milos, Sept. 2007

- Reaching the chiral regime Highlights from Lattice 2007
- Workshop:
 - Results using light dynamical fermions
 - Twisted mass G. Herdozia and C.Urbach (ETMC)
 - Clover improved dynamical fermions: GPDs G. Schierholz (QCDSF/UKQCD)

Outline

- **Overlap fermions:** f_{π} , pion form factor Sh. Hashimoto (JLQCD)
- **Hybrid approach: Form factors and GPDs Th. Korzec, J. Negele (LHPC)**
- **Staggered fermions: Charm Physics C. Davies (HPQCD)**
- Fundamental parameters of QCD Quark masses R. Sommer
- Harder Observables
 - > π - π and NN scattering A. Walker-Loud (NPLQCD)
 - **Excited states C. Morningstar**
 - Electric and magnetic polarizabilities Detmold
 - Neutron electric dipole moment S. Simula
 - **Nuclear Force N. Ishii**
 - Finite temperature and density C. Allton

Chiral extrapolation of lattice results - G. Colangelo C. Alexandrou University of Cyprus Hadron Physics on the Lattice, Milos, Sept. 2007

Lattice 2007: Highlights

• Impressive progress in unquenched simulations using various fermions discretization schemes

It is well known that naïve discretization of Dirac action

 $S_{F} = \int d^{4}x \, \overline{\psi}(x) \Big[\gamma_{\mu} \partial_{\mu} + m \Big] \psi(x) \rightarrow \partial_{\mu} \psi(x) = \frac{\psi(x + \mu) - \psi(x - \mu)}{2a} \quad \text{leads to 16 species}$

A number of different discretization schemes have been developed to avoid doubling:
Wilson : add a second derivative-type term --> breaks chiral symmetry for finite a
Staggered: "distribute" 4-component spinor on 4 lattice sites --> still 4 times more species, take 4th root, non-locality
Nielsen-Ninomiya no go theorem: impossible to have doubler-free, chirally symmetric, local, translational invariant fermion lattice action
C. Alexandrou University of Cyprus

Chiral fermions

Instead of a D such that $\{\gamma_5, D\}=0$ of the no-go theorem, find a D such that $\{\gamma_5, D\}=2a D \gamma_5 D$ Ginsparg - Wilson relation

Luescher 1998: realization of chiral symmetry but NO no-go theorem!

■ Kaplan: Construction of D in 5-dimensions → Domain Wall fermions

Left-handed fermion / right-handed fermion

Neuberger: Construction of D in 4-dimensions but with use of sign function →
 Overlap fermions

$$D = \frac{1 + \varepsilon(D_w)}{2}, \qquad \varepsilon(D_w) = \frac{D_w}{\sqrt{D_w^+ D_w}}$$

Equivalent formulations of chiral fermions on the lattice

But still expensive to simulate despite progress in algorithms

Compromise: - Use staggered sea (MILC) and domain wall valence (hybrid) - LHPC

- Twisted mass Wilson ETMC
- Clover improved Wilson QCDSF, UKQCD, PACS-CS

Rely on new improved algorithms

AIGAMUTUU UMVELSILY UL CYPTU

mauron Physics on the Lattice, Milos, Sept. 2007

Simulation of dynamical fermions

Results from different discretization schemes must agree in the continuum limit

Lattice 2007: Highlights

Impressive progress in unquenched simulations using various fermions discretization schemes

With staggered, Clover improved and Twisted mass dynamical fermions results are reported with pion mass of ~300 MeV

PACS-CS reported simulations with 210 MeV pions! But no results shown yet

•RBC-UKQCD: Dynamical N_F=2+1 domain wall simulations reaching ~300 MeV on ~3 fm volume are underway

JLQCD: Dynamical overlap N_F=2 and N_F=2+1, m_I ~m_s/6, small volume (~1.8 fm)

> Progress in algorithms for calculating D⁻¹ as $m_{\pi} \rightarrow$ physical value

Deflation methods: project out lowest eigenvalues Lüscher, Wilcox, Orginos/Stathopoulos

Lattice 2007: Highlights

Impressive progress in unquenched simulations using various fermions discretization schemes

With staggered, Clover improved and Twisted mass dynamical fermions results are reported with pion mass of ~300 MeV

PACS-CS reported simulations with 210 MeV pions! But no results shown yet

•RBC-UKQCD: Dynamical N_F=2+1 domain wall simulations reaching ~300 MeV on ~3 fm volume are underway

JLQCD: Dynamical overlap N_F=2 and N_F=2+1, m_I ~m_s/6, small volume (~1.8 fm)

> Progress in algorithms for calculating D⁻¹ as $m_{\pi} \rightarrow$ physical value

Deflation methods: project out lowest eigenvalues Lüscher, Wilcox, Orginos/Stathopoulos

> Chiral extrapolations

Using lattice results on f_{π}/m_{π} yield LECs to unprecedented accuracy

Begin to address more complex observables e.g. excited states and resonances, decays, finite density

Chiral extrapolations

G. Colangelo

Controlled extrapolations in volume, lattice spacing and quark masses: still needed for reaching the physical world

- Quark mass dependence of observables teaches about QCD can not be obtained from experiment
- Lattice systematics are checked using predictions from *x*PT
- **Chiral perturbation theory in finite volume:**

Correct for volume effects depending on pion mass and lattice volume

Pion sector

Applications to pion and nucleon mass and decay constants

$\pi\pi$ -scattering lengths

Pion form factor

Pion form factor

Two fit parameters: $m_0=0.865(10)$, $c_1=-1.224(17)$ GeV⁻¹ to be compared with ~-0.9 GeV⁻¹ (π -N sigma term)

Delta mass splitting

Symmetry: $u \nleftrightarrow d \to \Delta^{++}$ is degenerate with Δ^{-} and Δ^{+} with Δ^{0}

Check for flavour breaking by computing mass splitting between the two degenerate pairs

Splitting consistent with zero in agreement with theoretical expectations that isospin breaking only large for neutral pions (~16% on finest lattice)

Flavour singlets

C. Urbach

N_F=2 : flavour singlet pseudoscalar "η" - need disconnected contributions

Hadron structure

J. W. Negele - hybrid

G. Schierholz - Wilson clover

- > Coupling constants: g_A , $g_{\pi NN}$, $g_{\pi N\Delta}$, ...
- > Form factors: $F_{\pi}(Q^2)$, $G_A(Q^2)$, $G_p(Q^2)$, $F_1(Q^2)$,....
- > Parton distribution functions: q(x), $\Delta q(x)$,...
- > Generalized parton distribution functions: $H(x,\xi,Q^2)$, $E(x,\xi,Q^2)$,...

Masses: two-point functions <J(t_{sink}) J[†](0)>

Need to evaluate three-point functions: $(J(p',t_{sink}) \mathcal{O}(t,q) J^{\dagger}(p,0))$

$$\mathcal{O}(\mathbf{t}, \mathbf{\vec{q}}) = \int d^3 x \ e^{-i\vec{x}.\vec{q}} \ \overline{\psi}(x) \Big(\Gamma D^{\mu_1} D^{\mu_2} ... \Big) \psi(x)$$

In addition:

Four-point functions: yield detailed info on quark distribution only simple operators used up tp now - need all-to-all propagators

nucleon structure

Cyprus/MIT Collaboration, C. A.,

Nucleon EM form factors

G. Koutsou, J. W. Negele, A. Tsapalis

Nucleon axial form factors

Th. Korzec

Within the fixed sink method for 3pt function we can evaluate the nucleon matrix element of any operator with no additional computational cost

• use axial vector current $A^{a}_{\mu} = \overline{\psi}\gamma_{\mu}\gamma_{5}\frac{\tau^{a}}{2}\psi$ to obtain the axia • pseudoscalar density $P^{a} = \overline{\psi}i\gamma_{5}\frac{\tau^{a}}{2}\psi$ to obtain $G_{\pi N}(q^{2})$

to obtain the axial form factors

$$< N(\vec{p}', s') | A_{\mu}^{3} | N(\vec{p}, s) >= i \left(\frac{m_{N}^{2}}{E_{N}(p')E_{N}(p)} \right)^{1/2} \overline{u}(p') \left[G_{A}(Q^{2})\gamma_{\mu}\gamma_{5} + \frac{q_{\mu}\gamma_{5}}{2m_{N}}G_{p}(Q^{2}) \right] \frac{\tau^{3}}{2} u(p)$$

$$2m_{q} < N(\vec{p}', s') | P^{3} | N(\vec{p}, s) >= \left(\frac{m_{N}^{2}}{E_{N}(p')E_{N}(p)} \right)^{1/2} \frac{f_{\pi}m_{\pi}^{2}G_{\pi NN}(Q^{2})}{m_{\pi}^{2} + Q^{2}} \overline{u}(p') i\gamma_{5} \frac{\tau^{3}}{2} u(p)$$

PCAC relates G_A and G_p to $G_{\pi NN}$:

$$G_{A}(Q^{2}) - \frac{Q^{2}}{4m_{N}^{2}}G_{p}(Q^{2}) = \frac{1}{2m_{N}}\frac{f_{\pi}m_{\pi}^{2}G_{\pi NN}(Q^{2})}{m_{\pi}^{2} + Q^{2}}$$

 $\rightarrow \mathbf{G}_{\pi NN}(\mathbf{Q}^2)\mathbf{f}_{\pi} = \mathbf{m}_{N}\mathbf{G}_{\Lambda}(\mathbf{Q}^2)$

Generalized Goldberger-Treiman relation

Pion pole dominance:
$$\frac{1}{2m_N}G_p(Q^2) \sim \frac{2G_{\pi NN}(Q^2)f_{\pi}}{m_{\pi}^2 + Q^2}$$

Goldberger-Treiman relation

C. Alexandrou University of Cyprus

Hadron Physics on the Lattice, Milos, Sept. 2007

Results in the hybrid approach by the LPHC in agreement with dynamical Wilson results

Unquenching effects large at small Q² in line with theoretical expectations that pion cloud effects are dominant at low Q²

Cyprus/MIT collaboration

N to Δ transition form factors

Quadrupole form factors and deformation

$G_{\pi NN}$ and $G_{\pi N\Delta}$

 $> Q^2$ -dependence for $G_{\pi N} (G_{\pi N\Delta})$ extracted from $G_A (C_5^A)$ using the Goldberger-Treiman relation deviates at low Q^2

> Small deviations from linear Q²dependence seen at very low Q² in the case of $G_{\pi N\Delta}$

 $> G_{\pi N\Delta}/G_{\pi N}$ = 2C $_5^A/G_A$ as predicted by taking ratios of GTRs

 $> G_{\pi N\Delta}/G_{\pi N} = 1.60(1)$

Goldberger-Treiman Relations

Δ electromagnetic form factors

Electric quadrupole Δ form factor

G_{E2} connected to deformation of the Δ : $G_{E2}(Q^2 = 0) \sim m_{\Delta}^2 \int d^3 r \, \overline{\psi}(r) \left[3z^2 - r^2 \right] \psi(r)$

G_{E2} <0

Δ oblate in agreement with what is observed using density correlators to extract the wave function, C. A., Ph. de Forcrand and A. Tsapalis, PRD (2002)

G_{M3} also evaluated, small and negative

C. Alexandrou University of Cyprus

Hadron Physics on the Lattice, Milos, Sept. 2007

Moments of parton distributions

Parton distributions measured in deep inelastic scattering

Forward matrix elements:

$$< \mathbf{N}(\mathbf{p},\mathbf{s}) | \mathbf{O}_{\mathbf{q}}^{\{\mu_1 \dots \mu_n\}} | \mathbf{N}(\mathbf{p},\mathbf{s}) > \int d\mathbf{x} \; \mathbf{x}^{n-1} \mathbf{q}(\mathbf{x})$$

Moments of Generalized parton distributions

Off diagonal matrix element — Genelarized parton distributions $< \mathbf{N}(\mathbf{p}',\mathbf{s}') | \mathbf{O}_{q}^{\{\mu_{1}\dots\mu_{n}\}} | \mathbf{N}(\mathbf{p},\mathbf{s}) >= \overline{\mathbf{u}}(\mathbf{p}') \left[\sum_{\substack{i=0\\even}}^{n-1} \left\{ \mathbf{A}_{ni}^{q}(t) \mathbf{K}_{ni}^{A} + \mathbf{B}_{ni}^{q}(t) \mathbf{K}_{ni}^{B} \right\} + \delta_{n,even} \mathbf{C}_{ni}^{q}(t) \mathbf{K}_{n}^{C} \right] \mathbf{u}(\mathbf{p})$ GPD measured in Deep Virtual Compton Scattering **Generalized FF** $H^{n}(\xi, t) \equiv \int_{-1}^{1} dx \ x^{n-1} H(x, \xi, t)$ $F^{n}(\xi, t) \equiv \int_{-1}^{1} dx \ x^{n-1} E(x, \xi, t)$ DVCS $F_1(t), H(x,\xi,t)$ $H^{n}(0,t) = A_{n0}(t)$ $A_{10}(t) = F_{1}(t)$ $E^{n}(0,t) = B_{n0}(t)$ $B_{10}(t) = F_{2}(t)$ $p = \frac{1}{2}(p+p'), \quad q = (x+\xi)p, \quad q' = (x-\xi)p$ $\mathbf{t} = -\mathbf{O}^2 = \Delta^2$ t=0 (forward) yield moments of parton distributions

Transverse quark densities

Fourier transform of form factors/GPDs gives probability

m_π=744 MeV

Transverse quark distributions:

$$\int_{-1}^{1} \mathbf{dx} \ \mathbf{x}^{\mathbf{n}-1} \ \mathbf{q}(\mathbf{x}, \vec{\mathbf{b}}_{\perp}) = \int \frac{\mathbf{d}^2 \Delta_{\perp}}{(2\pi)^2} \ \mathbf{e}^{-\mathbf{i}\vec{\mathbf{b}}_{\perp} \cdot \vec{\Delta}_{\perp}} \ \mathbf{A}_{\mathbf{n}\mathbf{0}}^{\mathbf{q}}(-\vec{\Delta}_{\perp}^2)$$

A₁₀, A₂₀, A₃₀

1.5

-t [GeV²]

2

2.5

3

1

0.8

0.4

0.2

0

0.5

1

A^{u_d} 0.6

Spin structure of the nucleon

Total spin of quark:

Spin of the nucleon:

QCDSF/UKQCD Dynamical Clover

For m_{π} ~340 MeV: J_u =0.279(5) J_d =-0.006(5) L_{u+d} =-0.007(13) $\Delta\Sigma_{u+d}$ =0.558(22)

In agreement with LPHC, Ph. Hägler et al., hep-lat/07054295

Nucleon and quarks both polarized

Quark masses

Fundamental parameters of L_{QCD}: Use experimental input to fix, then predict other observables $\lceil c \rceil = \lceil c \rceil$

$$\begin{bmatrix} \mathbf{f}_{\pi} \\ \mathbf{m}_{\pi} \\ \mathbf{m}_{K} \\ \mathbf{m}_{K} \\ \mathbf{m}_{D} \\ \mathbf{m}_{B} \end{bmatrix} \xrightarrow{L_{QCD}(\mathbf{g}_{0},\mathbf{m}_{f})} \frac{\mathbf{\Lambda}_{QCD}}{\mathbf{\hat{M}} = (\mathbf{M}_{u} + \mathbf{M}_{d})/2 \\ \mathbf{\hat{M}}_{s} \\ \mathbf{M}_{s} \\ \mathbf{M}_{c} \\ \mathbf{M}_{b}$$

Asymptotic theory: know the large energy behaviour

For energies>> Λ_{QCD} use perturbation theory

At low energy scale use lattice QCD

need a scheme to connect

C. Alexandrou University of Cyprus Ha

Hadron Physics on the Lattice, Milos, Sept. 2007

Quark masses

Define running mass using PCAC:

$$\partial_{\mu} \mathbf{A}_{\mu}^{\mathrm{su}} = (\mathbf{m}_{\mathrm{s}} + \mathbf{m}_{\mathrm{u}}) \mathbf{P}^{\mathrm{su}}$$

Take matrix elements:

u and d quarks:
$$\bar{m}_{ud}(\mu) = \frac{Z_A}{Z_P(\mu)} \frac{m_{\pi} < 0 | A_0^a | \pi^a(0) >}{2 < 0 | P^a | \pi^a(0) >}$$

• For s-quark use K:,
$$\bar{m}_{u}(\mu) + \bar{m}_{s}(\mu) = \frac{Z_{A}}{Z_{p}(\mu)} \frac{m_{K}^{2} < 0 | A_{0}^{su} | K(0) > 0 | P^{su} | P^{s$$

renormalization constants Z_A and Z_P are calculable nonperturbatively, Alpha-Collaboration

For c-quark and for b-quark additional complication of very different scales between the light and heavy quarks

for charm use D: large cut off effects ~(m_ca)²

for b-quark need a different method

Various approaches exist e.g. Fermilab approach which resumes all mass dependences into the coefficients of the action, HQET **match to QCD using a "small box" with**

match to QCD using a "small box" with fine lattice spacing

Results

• $N_F = 2$, $\bar{m}_{ud}^{\overline{MS}}(2 \text{ GeV}) = 3.82(13)(24) \text{ MeV}$

G. Herdoiza, ETMC 2007

• $N_F = 0$, $\bar{m}_s^{MS}(2 \,\text{GeV}) = 97(3) \,\text{MeV}$

R. Sommer, Alpha Collaboration

N_F=2, Preliminary unquenched results from Alpha, ETM, QCDSF, CP-PACS - need smaller errors and continuum extrapolation

N_F = 0, $\bar{m}_{c}^{\overline{MS}}(\bar{m}_{c}) = 1.301(34) \,\text{GeV}$

R. Sommer, Alpha Collaboration

N_F = 0, $\bar{\mathbf{m}}_{b}^{MS}(\bar{\mathbf{m}}_{b}) = 4.347(48) \,\text{GeV}$

R. Sommer

But expect progress in unquneched calculations in next ~3 years

Weak Decays and CKM matrix

For charm use highly improved staggered action remove further cut off effects at $\alpha(am_c)^2$ and $(am_c)^4$

Leptonic D-meson decays:

C. Alexandrou University of Cyprus

K

Unitarity triangle

Using lattice input

 B_K f_K/f_{π} , $f_+(K \rightarrow \pi l \nu)$ $F(B \rightarrow D^* l \mathbf{v}) \ f_+(B \rightarrow \pi l \mathbf{v})$ $\frac{f_{B_s}\sqrt{B_{B_s}}}{f_B\sqrt{B_B}}$

Expectation: errors on lattice results should halve in the next two years

for a given $N \times N$ correlator matrix $C_{\alpha\beta}(t) = \langle 0 | O_{\alpha}(t) O_{\beta}^{\dagger}(0) | 0 \rangle$ one defines the N principal correlators $\lambda_{\alpha}(t,t_0)$ as the eigenvalues of $C(t_0)^{-1/2}C(t)C(t_0)^{-1/2}$

where t_0 (the time defining the "metric") is small

- can show that $\lim_{t\to\infty} \lambda_{\alpha}(t,t_0) = e^{-(t-t_0)E_{\alpha}} (1+e^{-t\Delta E_{\alpha}})$ N principal effective masses defined by $m_{\alpha}^{\text{eff}}(t) = \ln\left(\frac{\lambda_{\alpha}(t,t_0)}{\lambda_{\alpha}(t+1,t_0)}\right)$ now tend (plateau) to the N lowest-lying stationary-state energies

Incorporating orbital and radial structure

displacements of different lengths build up radial structure
 displacements in different directions build up orbital structure

- operator design minimizes number of sources for quark propagators
- useful for mesons, tetraquarks, pentaquarks even!
- can even incorporate hybrid meson operators

Nucleon spectrum

 200 quenched configs, 12³×48 anisotropic Wilson lattice, a_s~0.1 fm, a_s/a_t~3, m_π~700 MeV

Light quark-hybrids

Nucleon-nucleon potential

"Wave function" approach:

Define a potential through the Schrödinger equation

 $\begin{bmatrix} \mathbf{H}_{0} + \mathbf{V}(\mathbf{x}) \end{bmatrix} \boldsymbol{\phi}_{\mathrm{E}}(\mathbf{x}) = \mathbf{E} \boldsymbol{\phi}_{\mathrm{E}}(\mathbf{x}) \quad \mathbf{H}_{0} = -\frac{\nabla^{2}}{2\mu} \qquad \text{reduced mass} \\ \text{non-relativistic approximation - valid?}$

Extract potential as $V(x) = \frac{(E - H_0)\phi_E(x)}{\phi_E(x)}$

"Wave function": $\varphi_{E}(\vec{r}) = <0 | N(\vec{x}, 0)N(\vec{y}, 0) | 2N; E > \vec{r} = \vec{x} - \vec{y}$ 4pt correlator 2N state with energy E (use wall source in Coulomb gauge)

Two L=0 channels:

Singlet ¹S₀: Central potential only V_c(r)

Triplet ³S₁: Central potential V_c(r) and tensor V_T(r) --> V_c^{eff}(r)

Central NN potential

Quenched, a=.137 fm, L=4.4 fm, m_{π} =370, 527, 732 MeV

Electric and magnetic polarizability of hadrons

W. Detmold

Response of hadron to an external EM field

Calculate the quadratic mass shift in the presence of an external uniform electric or magnetic field:

$$\Delta m = -\frac{1}{2} \alpha \vec{E}^2 - \frac{1}{2} \beta \vec{B}^2$$

magnetic polarizability
electric polarizability

Electric polarizability calculated for neutral hadrons in the quenched approximation-value for neutron consistent with experimental value, J. Christensen et al., PRD72 (2005) 034503

Electric dipole moment of the neutron

S. Simula

Definition: first moment of neutron charge distribution

$$\vec{d}_n = \int d^3x \, \vec{x} < n | J^0(x) | n >$$

Zeroth component of EM current

Non-zero electric dipole moment --> time reversal violation --> important check of standard model predictions

Standard model: d_n< 10⁻³¹ e cm

The asymmetry matter/antimatter observed in the Universe requires time reversal **Electroweak baryongenesis:** $d_n < 10^{-26}$ e cm **violation many order of magnitude larger**

Current limit: |d_n|< 2.9 x10⁻²⁶ e cm C. A. Baker et al. PRL 98 (2007)

many accurate experiments in progress aiming at increasing accuracy by 3 orders

Lattice: Involves the topological charge operator --> Difficult to evaluate

Dynamical domain wall fermions with a \theta-term in the action, d_n is found to be, within the statistical errors, consistent with zero, F. Berruto, et al. PRD 73 (2006)

But strategy is well defined....

Nature of QCD transition

Impressive progress at zero density finite temperature

The nature of the QCD transition depends on masses of quarks --> simulate along line of constant physics: m_{π} =135 MeV and m_{κ} =500 MeV, Y. Aoki et al. Nature 443 (2006)

Finite size scaling for chiral susceptibility $\chi = \frac{T}{V} \frac{\partial^2 \log Z}{\partial m^2}$

first order transition: peak width ~1/V, peak height ~ V

cross-over: peak width~constant, peak height~ constant

With an eight-fold increase in volume scaling volume independent --> cross-over Finite a-effects checked

In medium modification of hadrons

What happens to hadrons in the limit of high temperature and density?

- at T=0 quarks dress with gluons bare quark mass m_q~0 constituent quarks mass M_q~300 MeV
- in hot medium dressing melts $M_q \rightarrow 0$ for $m_q=0 \rightarrow$ chiral restoration

Energy density: - ideal gas of massless pions, ε_H~T⁴ ⁻ idela gas of massless quarks (N_f=2), ε_{OGP}~12T⁴

Sudden increase in energy density - latent heat of deconfinement

Conclusions

 Lattice QCD is entering an era where it can make significant contributions in the interpretation of current experimental results.

A valuable method for understanding hadronic phenomena

Accurate results on coupling constants, Form factors, moments of generalized parton distributions are becoming available close to the chiral regime (m_{π} ~300 MeV).

More complex observables are evaluated e.g excited states, polarizabilities, scattering lengths, resonances, finite density

First attempts into Nuclear Physics e.g. nuclear force

Computer technology and new algorithms will deliver 100's of Teraflop/s in the next five years

Provide dynamical gauge configurations in the chiral regime

Enable the accurate evaluation of more involved matrix elements

C. Alexandrou University of Cyprus

Hadron Physics on the Lattice, Milos, Sept. 2007

