Longitudinal spin-dependent quark distributions from DIS at COMPASS

Recent COMPASS@CERN results on inclusive and semi-inclusive muon-deuteron asymmetries in deep inelastic scattering and what does one learn from them.

Wojciech Wislicki, A. Soltan Institute, Warsaw, PL

What and why to measure

- One needs polarized target and beam to
 measure spin-dependent quark distributions
- On isoscalar target only u+d can be accessed
- One needs final-state hadrons to separate val from sea

What and why to measure: cross section asymmetries

Inclusive

$$A_1 = \frac{\sigma_0 - \sigma_2}{\sigma_0 + \sigma_2}$$

In QPM, for deuteron target, *u* and *d* quarks and antiquarks contribute equally

$$A_1^d = \frac{(e_u^2 + e_d^2)(\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d}) + 2e_s^2(\Delta s + \Delta \bar{s})}{(e_u^2 + e_d^2)(u + \bar{u} + d + \bar{d}) + 2e_s^2(s + \bar{s})}$$

What and why to measure: cross section asymmetries, cont.

Semi-Inclusive: quarks and antiquarks do not contribute equally for difference in fragmentation likelihood, e.g.

$$D_u^{\pi^+} > D_{\bar{u}}^{\pi^+}$$

Allows for valence vs. sea separation

What and why to measure: cross section asymmetries, cont.

Semi-Inclusive: for the "h+"-"h-" difference asymmetries only valence quarks contribute.

Particularly simple in LO QCD for isoscalar target; fragmentation functions do not enter at all

$$A_d^{h^+ - h^-} = \frac{\Delta u_v + \Delta d_v}{u_v + d_v}$$

200M muons/spill, 4.8/16.2 s, 160 GeV/c, P=-76%

Estimators for asymmetries Twin target configuration, reversing polarization every 8 hours

COMPASS polarized target

Li D, P=50%, f=0.38

COMPASS statistics 2002-04

 $Q^2 > 1 \,\text{GeV}^2(DIS), 0.1 < y < 0.9(rad.corr.), 0.004 < x < 0.7$

47 million DIS events

• 0.2 (target fragm.) <z<0.85 (exclusive diff.)

30 million had+, 25 million had-

No particle identification from RICH used yet

Asymmetries results

Asymmetries results, cont.

COMPASS difference

asymmetries

$$A^{h^+ - h^-} = \frac{1}{1 - r} (A^{h^+} - rA^{h^-})$$

1/0 expression at r=1; restrict to x>0.006

$$r = \frac{\sigma^{h^-}}{\sigma^{h^+}} = \frac{N^-/a^-}{N^+/a^+}$$

Acceptance determined using MC

Acceptance ratio

Difference asymmetry

Spin-dependent valence quarks

$$\Delta u_v + \Delta d_v = \frac{u_v + d_v}{(1 + R)(1 - 1.5\omega_D)} A_d^{h^+ - h^-}$$

For high x, neglecting sea

$$\Delta u_v + \Delta d_v = \frac{36}{5} \frac{g_1^d}{1 - 1.5\omega_D}$$

X-integrals

Unmeasured regions

x>0.7 contribution estimated using DeFlorian-

Navarro-Sassot parametrization to be 0.004

• X<0.006 is negligible

Systematic errors

Standard contributions to asymmetries (beam

and target polarizations, D, f) amount to 8%

- Radiative corrections: < 0.001 for any x
- False asymmetries studied by using different

grouping of data: about 0.5 of statistical error

X-integrals

• Non-strange sea can be determined using

$$\Delta \bar{u} + \Delta \bar{d} = 3\Gamma_1^N - \frac{1}{12}\Gamma_v + \frac{1}{12}a_8$$

Integrals over 0<x<1: $\Gamma_{1(v)}$

Octet axial current matrix element: a_8

X-integrals, values

	<i>x</i> -range	Q^2	$\Delta u_v + \Delta d_v$		$\Delta ar{u} + \Delta ar{d}$	
		$(\text{GeV}/c)^2$	Exp. Value	DN\$	Exp.Value	DNS
SMC	0.003 0.7	10	$0.26 \pm 0.21 \pm 0.11$	0.386	$0.02 \pm 0.08 \pm 0.06$	-0.009
HERMES	0.023 0.6	2.5	$0.43 \pm 0.07 \pm 0.06$	0.363	$-0.06 \pm 0.04 \pm 0.03$	-0.005
CUMPAGE	0.006 0.7	10	$0.40 \pm 0.07 \pm 0.05$	0.385		-0.007
OOMI YOO	01	01	$0.41 \pm 0.07 \pm 0.05$		$0.0 \pm 0.04 \pm 0.03$	

Conclusions

• High-precision, wide x-range measurement of

the valence-quark contribution to the nucleon

spin

• The non-strange sea polarization is small; data

slightly favour opposite signs for *u* and *d*

Additional remarks

• From QCD fits to inclusive data $\Delta s = -0.08 \pm 0.03$

Identified kaons: x-dependence, but unlikely to

improve integral; analysis underway

- Proton data to separate light flavours (2007)
- NLO analysis needed: sea vs. gluons