Strange Quark Contribution to Nucleon Electroweak Form Factors in G^e Experiment

EINN 2007 Maud Versteegen LPSC Grenoble FRANCE

Outline

G⁰ Collaboration : Spokesperson: Doug Beck (UIUC)

Caltech, Carnegie-Mellon, William&Mary, Hampton, IPN-Orsay, LPSC-Grenoble, JLab, Kentucky, LaTech, NMSU, TRIUMF, U Con, UIUC, U Manitoba, U Maryland, U Mass, UNBC, VPI, Yerevan

- 1. Physics Motivation
- 2. G⁰ Forward Angle
- 3. G⁰ Backward Angle
 - 1. Setup
 - 2. Data Analysis

Conclusion

Strange Quark

• QCD : nucleon = valence quarks + sea quarks + gluons

- Strange s quark contribute to global properties of the nucleon :
 - Momentum : ~4% (Deep Inelastic Scattering)
 - Mass : ~ 0 to 30% (π-N)
 - Spin : ~ 0 to -10% (Polarized DIS)
- How does *s* quark contribute to electromagnetic properties of the nucleon?

October 18, 2007 EINN 2007. G ⁰ Backward Angle Maud Verste	gen - LPSC Grenoble FRANCE Part 1
---	-----------------------------------

October 18, 2007 EINN 2007. G⁰ Backward Angle Maud Versteegen - LPSC Grenoble FRANCE

Parity Violating Asymmetries Measurement

Accessing weak interaction cross section :

$$\sigma_{el} \propto \left| M_{\gamma} + M_Z \right|^2 \quad {\rm but} \quad \frac{M_{\gamma}}{M_Z} \approx 10^5$$

 Parity violating asymmetries only see interference terms and involve EM and weak form factors :

$$A_{PV} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} \propto \frac{2M_{\gamma}M_{Z}}{\left|M_{\gamma}\right|^{2}} \propto \frac{A_{E} + A_{M} + A_{A}}{2\sigma_{unpol}} \qquad \left(\begin{array}{c} A_{E} = \mathcal{E} \cdot G_{E}^{2} \cdot G_{E}^{\gamma} \\ A_{M} = \tau \cdot G_{M}^{2} \cdot G_{M}^{\gamma} \\ A_{A} = -(1 - 4\sin^{2}\theta_{W})\mathcal{E}' \cdot G_{A}^{e} \cdot G_{M}^{\gamma} \end{array}\right)$$

- Combining
 - two kinematics : e- scattering angles
 - two targets : LH2,LD2

gives three linear combinations of EM and weak form factors

$$\begin{cases} A_{PV}^{proton}(\theta \approx 5^{\circ}, 10^{\circ}) \\ A_{PV}^{proton}(\theta \approx 110^{\circ}) \\ A_{PV}^{neutron}(\theta \approx 110^{\circ}) \end{cases} \xrightarrow{\leftarrow} \begin{cases} G_E^s(Q^2) \\ G_M^s(Q^2) \\ G_A^e(Q^2) \end{cases}$$

Jefferson Lab Facility

CEBAF facility, Jefferson Lab., Virginia

CEBAF accelerator : - two LINACs, 0.6 GeV

- Up to 6 GeV
- Beam polarization up to ~85%
- Helicity flips :
 - 30Hz (main power effects)
 - Pseudo-random Quartet structure (+--+), (-++-)
 - Mechanical Helicity flip every 24h (IHWP)
 - Special features for G⁰:
 - Special beam time structure (32ns)
 - Very low energy (362 MeV)

October 18, 2007 EINN 2007. G ⁰ Backward Angle	Maud Versteegen - LPSC Grenoble FRANCE	Part 2
---	--	--------

G⁰ Forward Angle

Nov 2003 - May 2004

- Hydrogen target
- Electron beam energy of 3 GeV
- Detection of recoiling proton between 50° and 80°.
- Large Q² range :

0.12 to 1.0 (GeV/c)²

- 8 octants of 16 scintillators (FPDs), each with a fixed Q²
- Background separation by time of flight measurement (special beam structure of 32 ns).

October 18, 2007 EINN 2007. G ⁰ Backward Angle	Maud Versteegen - LPSC Grenoble FRANCE	Part 2
---	--	--------

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

G⁰ Forward Angle

Nov 2003 - May 2004

- 700 hrs of data taking : 101 C.
- 18 Q² measurements
- Good agreement with other experiments (HAPPEx and PVA4)
- Data disagrees with the no-strange hypothesis at the 89% confidence level

 $G^{s}_{E} + \eta G^{s}_{M}$. Grey bands indicate systematics.

October 18, 2007	EINN 2007. G ⁰ Backward Angle	Maud Versteegen - LPSC Grenoble FRANCE	Part 2
October 18, 2007	EINN 2007. G ^o Backward Angle	Maud Versteegen - LPSC Grenoble FRANCE	Part

G⁰ Backward Angle

Backward Angle Configuration

- Hydrogen and deuterium targets
- Electron beam energy of :
 - 362 MeV : Q²=0.23 (GeV/c)²
 - 687 MeV : Q²=0.62 (GeV/c)²
- Detection of scattered electrons between 100° and 130°.

- Particle detection and identification :
 - 16 Focal Plan Detectors
 - 9 Cryostat Exit Detectors
 - elastic and inelastic electron separation
 - Additional Čerenkov detectors
 - electron and pion separation

G⁰ Backward Angle

"electron" and "pion" CED-FPD correlation matrices (LD2)

October 18, 2007 EINN 2007. G ⁰ Backward Angle	Maud Versteegen - LPSC Grenoble FRANCE	Part 3
---	--	--------

G⁰ Backward Angle : Data Quality

G⁰ Backward Angle : Beam Specifications

Beam Parameter	Achieved (IN-OUT)/2	"Specs"
Charge asymmetry	0.09 +/- 0.08	2 ppm
x position difference	-19 +/- 3	40 nm
y position difference	-17 +/- 2	40 nm
x angle difference	-0.8 +/- 0.2	4 nrad
y angle difference	0.0 +/- 0.1	4 nrad
Energy difference	2.5 +/- 0.5	34 eV
Beam halo (out 6 mm)	< 0.3 x 10 ⁻⁶	10 ⁻⁶

• Beam parameters specifications were set to assure:

$$A_{P_i}^{false} \leq 5\% \Delta A_{stat}^{meas}$$

- Helicity correlated beam properties
 - ightarrow false asymmetry

Correction : linear regression

Measured Polarity

85% polarization has been reached routinely using superlattice GaAs cathodes.

Suleiman, Bailey, Schaub, Pitt, Gaskell, Horn, Mammei

October 18, 2007	EINN 2007. G0 Backward Angle	Maud Versteegen - LPSC Grenoble FRANCE	Part 4
------------------	------------------------------	--	--------

October 18, 2007 EINN 2007. G ⁰ Backward Angle	Maud Versteegen - LPSC Grenoble FRANCE	Part 4
---	--	--------

Electron Measured-Corrected Yield

Electron Measured-Corrected Yield

- Modeling the electronics allowed for the correction of the following bias :
 - CED-FPD coincidence electronics dead time
 - Electron, resp. pion, contamination due to Čerenkov electronics dead time and randoms

Electron Measured-Corrected Yield

- Modeling the electronics allowed for the correction of the following bias :
 - CED-FPD coincidence electronics dead time
 - Electron, resp. pion, contamination due to Čerenkov electronics dead time and randoms

tober 18, 2007 EINN 2007. G ⁰ Backward Angle	Maud Versteegen - LPSC Grenoble FRANCE	Part 4
---	--	--------

Conclusion

• G⁰ Backward Angle data taking completed : (84% polarization)

Q ² (GeV/c) ²	0.23	0.62
Hydrogen	90C	100C
Deuterium	65C	45C

vs 170 C proposed at 75% polarization

- · Ongoing analysis for thorough study of systematics
- Combined Forward and Backward results will provide a clean separation of G_E^s, G_M^s, and G_A^e at Q² of 0.23 and 0.6 (GeV/c)²

October 18, 2007 EINN 2007. G⁰ Backward Angle Maud Versteegen - LPSC Grenoble FRANCE Conclusion

Thank you for your attention

October 18, 2007 EINN 2007. G ⁰ Backward Angle Ma	Maud Versteegen - LPSC Grenoble FRANCE	
--	--	--

World Data at Q² = 0.1 GeV² (pre-HAPPEX '05)

• G0 results (extrapolated to $Q^2=0.1 \text{ GeV}^{2}$) combined with world data:

 G_{E}^{s} = -0.103 +/- 0.28 G_{M}^{s} = 0.62 +/- 0.31

• 2 σ deviation of $G_{M}{}^{s}$ from zero

World Data at Q²=0.1 GeV² "Rosenbluth Plot"

October 18, 2007	EINN 2007. G ⁰ Backward Angle	Maud Versteegen - LPSC Grenoble FRANCE	
------------------	--	--	--

Octant 1 - Measured-Corrected Yield

- Modeling the electronics allowed for the correction of the following bias :
 - CED-FPD coincidence electronics dead time

CED-FPD coincidence randoms

Physics contamination : Dilution factors

October 18, 2007 EINN 2007. G ⁰ Backward Angle M	Maud Versteegen - LPSC Grenoble FRANCE
---	--

Contamination by Target AI windows

Dead Time Correction Procedure

First Step Correction

- Corrects CEDxFPD coincidences from dead time, CED-FPD randoms and MT multihits effects
- Results :

"Residual Dead time" : residual slope in yields vs beam current, after DT, MH **and** random corrections

	All Octants (elastic locus)		All Octants (inelastic locus)		
	To be corrected	Residual	To be corrected	Residual	
LH2 362 MeV 60 µA	7%	2.1%	8.7%	4.5%	
LH2 687 MeV 60 µA	5.9%	3.6%	8.9%	5.9%	
LD2 362 MeV 35 µA	14.5%	3.5%	27%	3.5%	
LH2 687 MeV 30 µA	10%	1.2%	13%	1.8%	

(see Philippe's Addendum to Dead Time Report)

 \implies Residual Dead Time in elastic locus is between 1 and 4 %

October 18, 2007 EINN 2007. G⁰ Backward Angle Maud Versteegen - LPSC Grenoble FRANCE

Cerenkov Efficiency

- 31 MHz data, separate pions from electrons.

- Maud, Alex; Analysis of 31 MHz data, independent analysis

-	-	r20475.76F_actant_4	(100 mm) (12	05.ltol_octare_4	100.000
LD2 NO	V 2006 687 MeV Multiplicite 3 (Old PMTs)	Î	1000	A	
oct	eff	- /\	6000	1 P. 1	
1	53.95 +- 0.85		8000	1	
2	42.92 +- 0.94			1	
3	44.31 +- 1.14	- /	3000-	1	
4	26.36 +- 0.51		1 2000	1 1	
5	31.23 +- 1.36	- H	1	1	
6	42.63 +- 0.60		-	- down	have
7	30.32 +- 0.98		Tel con		100 1000
8	36.98 +- 0.62				
		r32375.5of_octare_6	10m -11 (001	75.ToF_octant_6	1-m
LD2 JA	NV 2007 360 MeV Multipilicte 2 (New PMTs)	100	£	s 4	
1	86.32 +- 0.07		1400	1 1	
2	80.51 +- 0.04	- 1 I	1200-	1 1	
3	81.97 +- 0.24		1000-		
4	69.42 +- 0.04	- 111	800-	1111	
5	76.21 +- 0.05		800-	11	
6	85.18 +- 0.03	/ M	400-	1 14	
7	72.83 +- 0.08	/ X	200-	In	
8	79.89 +- 0.04	2 32 34 36 30	100 102	12 34 96 58 100	102 104
			ToP (mail		ToP (mail

- 362 MeV LD2, Mult2

October 18, 2007 EINN 2007. G⁰ Backward Angle Maud Versteegen - LPSC Grenoble FRANCE