Exclusive meson production

recent experimental results

Andrzej Sandacz

Soltan Institute for Nuclear Studies, Warsaw

Electromagnetic Interactions with Nucleons and Nuclei Milos, Greece, September 12-15, 2007

- Motivation
- Exclusive vector meson production at small x H1 and ZEUS
- Unpolarised cross sections for ρ^0 at large xCLAS
- Single transverse target spin asymmetries for ρ⁰ HERMES and COMPASS
- More results on spin dependence in VM production COMPASS and HERMES
- **Exclusive** π^+ and π^0 production HERMES, CLAS and JLAB Hall A
- Conclusions

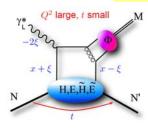
Why hard exclusive meson production?

Nucleon structure Hard exclusive processes (DVCS + DVMP)

constrain GPDs

'Holy Grails' of GPDs:

- distribution of partons in transverse plane vs. x 'nucleon tomography'
- orbital angular momentum of quarks
- VM production at small x sensitive to gluons
- Mechanism of high energy diffraction (exclusive VM production)


BFKL vs. DGLAP, k_t -factorisation, ...

Space-time evolution of hadronic fluctuations of γ^*

Color Transparency (also Color Opacity) – important predictions of pQCD

Hard exclusive meson production

→ 4 Generalised Parton Distributions (GPDs)
for each quark flavour and for gluons

GPDs depend on 3 variables: x, ξ , t

Fractorisation proven only for σ_L σ_T suppressed of by $1/Q^2$ necessary to extract longitudinal or

necessary to extract longitudinal contribution to observables $(\sigma_{\!_L}\,,\,\ldots)$

 \triangleright allows separation $(H,E) \leftrightarrow (\widetilde{H},\widetilde{E})$ and wrt quark flavours

Flavour sensitivity of DVMP on the proton

ν.	ir sensitivity (of DVIVIP on the	ا 5
	$ ho^0$	2u+d, 9g/4	
	ω	2u-d, 3g/4	
	φ	s, g	
	ρ+	u-d	
	J/ψ	g	

- $\begin{array}{cccc} H & E \\ \widetilde{H} & \widetilde{E} & \text{Vector mesons } (\rho, \omega, \phi) \\ & & \text{Pseudoscalar mesons } (\pi, \eta) \\ & & \text{conserve} & \text{flip nucleon helicity} \end{array}$
- \triangleright quarks and gluons enter at the same order of α_s
- \blacktriangleright wave function of meson (DA Φ)

additional information/complication

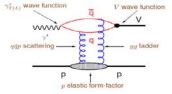
LT-LO observables in hard exclusive meson production relevant for GPDs

for vector mesons: ρ^0 , ρ^+ , f_2 , ...

$$\begin{array}{lll} \text{unpolarised} & & & \\ \text{cross section } (\sigma_{_{00}^{++}}^{^{++}} \equiv \sigma_{_L}) & \frac{1}{\Gamma'} \frac{d\sigma_{00}^{++}}{dt} & = & (1-\xi^2) \, |\underline{\mathcal{H}}_M|^2 - \left(\xi^2 + \frac{t}{4M_p^2}\right) |\mathcal{E}_M|^2 - 2\xi^2 \, \mathrm{Re} \, (\mathcal{E}_M^* \mathcal{H}_M), \\ \text{transverse target} & & \frac{1}{\Gamma'} \, \mathrm{Im} \, \frac{d\sigma_{00}^{+-}}{dt} & = & -\sqrt{1-\xi^2} \, \frac{\sqrt{t_0-t}}{M_p} \, \mathrm{Im} \, (\mathcal{E}_M^* \mathcal{H}_M) \end{array}$$

access to GPD E

(large Q² approximation)


related to orbital momentum for pseudoscalar mesons: π^0 , π^+ , η , ... unpolarised

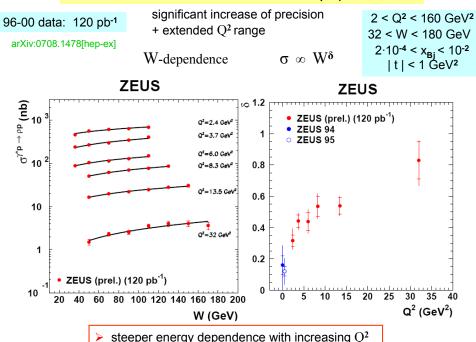
$$\begin{array}{lll} & \frac{1}{\Gamma'} \frac{d\sigma_{00}^{++}}{dt} & = & (1-\xi^2) \, |\tilde{\mathcal{H}}_M|^2 - \xi^2 \frac{t}{4M_p^2} \, |\tilde{\mathcal{E}}_M|^2 - 2\xi^2 \, \mathrm{Re} \, (\tilde{\mathcal{E}}_M^* \tilde{\mathcal{H}}_M), \\ & \text{transverse target} \\ & \mathrm{spin \ asymmetry} & & \frac{1}{\Gamma'} \, \mathrm{Im} \, \frac{d\sigma_{00}^{+-}}{dt} & = & \sqrt{1-\xi^2} \, \frac{\sqrt{t_0-t}}{M_p} \, \xi \, \mathrm{Im} \, (\underline{\tilde{\mathcal{E}}_M^*} \tilde{\mathcal{H}}_M) \\ & & \Gamma' = \frac{\alpha_{\mathrm{em}}}{Q^6} \, \frac{x_B^2}{1-x_B} & \xi = \frac{x_B}{2-x_B}, & -t_0 = \frac{4\xi^2 M_p^2}{1-\xi^2} \end{array}$$

$$\mathcal{H}_{\scriptscriptstyle{\mathcal{M}}},\widetilde{\mathcal{H}}_{\scriptscriptstyle{\mathcal{M}}},\mathcal{E}_{\scriptscriptstyle{\mathcal{M}}},\widetilde{\mathcal{E}}_{\scriptscriptstyle{\mathcal{M}}}\quad\text{are integrals of GPDs}\quad H,\widetilde{H},E,\widetilde{E}\quad \text{ appropriate for production of meson M}$$

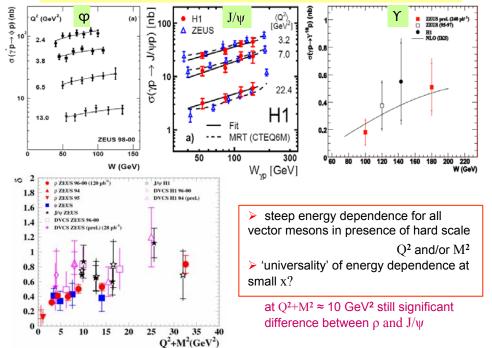
Models for exclusive VM production at small *x*

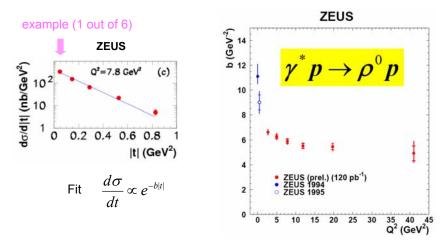
- > at small x sensitivity mostly to gluons
- \triangleright at very small x huge NLO corrections, large ln(1/x) terms (BFKL type logs)
- pQCD models to describe colour dipole-nucleon cross sections and meson WF

dipole transv. size W-dep. t-dep.
large weak steep small strong shallow

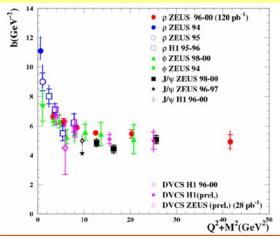

- Frankfurt-Koepf-Strikman (FKS) Phys.Rev. D57 (1998) 512
- Martin-Ryskin-Teubner (MRT)
 Phys.Rev. D62 (2000) 014022

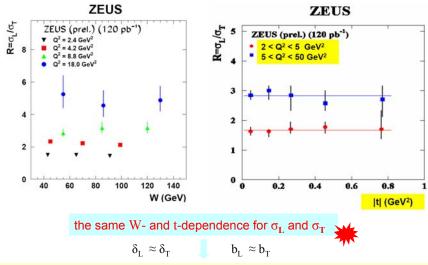
sensitivity to different gluon density distibutions


- Farshaw-Sandapen-Shaw (FSS) Phys.Rev. D69 (2004) 094013
- Kowalski-Motyka-Watt (KMW)
 Phys.Rev. D74 (2006) 074016
- Dosch-Fereira (DF) hep-ph/0610311 (2006)


sensitivity to ρ^0 wave function

Recent ZEUS results on exclusive ρ⁰ production

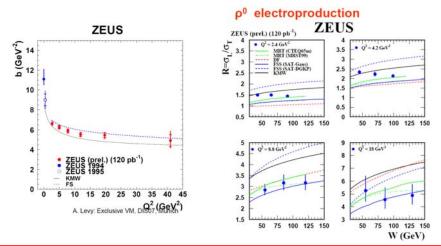

W-dependence for hard exclusive processes at small x


> shallower t-dependence with increasing Q²

t-dependence for hard exclusive processes at small x

- b-slopes decrease with increasing scale Q^2 and/or M^2 approaching a limit $\approx 5 \text{ GeV}^{-2}$ at large scales
- \triangleright approximate 'universality' of slopes as a function of (Q² + M²)

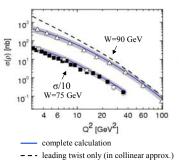
Selected results on $R = \sigma_I / \sigma_T$ for ρ^0 production



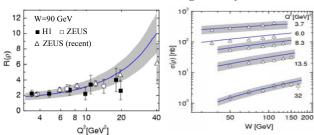
the same size of the longitudinal and transverse γ^* involved in hard ρ^0 production

i.e. contribution of large ggbar fluctuations of transverse γ^* suppressed

Comparison to theory

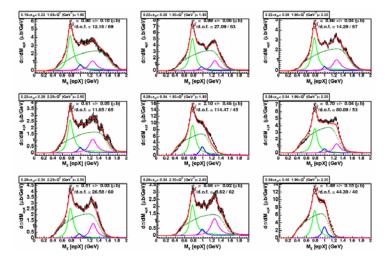

extensive comparison of the models to recent ZEUS ρ^0 data in arXiv:0708.1478[hep-ex] below just selected examples

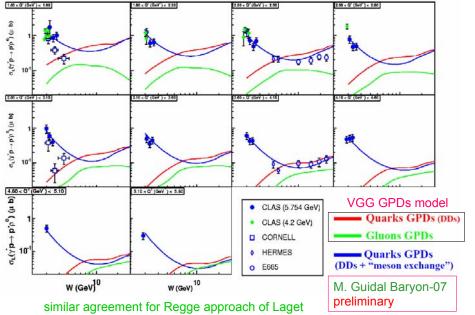
- considered models describe qualitatively all features of the data reasonably well
- recent ZEUS data are a challenge; none of the models gives at the moment satisfactory quantitative description of all features of the data


More comparison to theory

 Goloskokov-Kroll arXiv:0708,3569[hep-ph]

'Hand-bag model'; GPDs from DD using CTEQ6 power corrections due to k, of quarks included


both contributions of γ_{\perp}^* and γ_{\perp}^* calculated

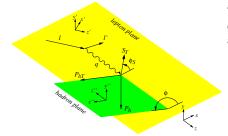

- ▶ leading twist prediction above full calculation, even at Q² = 100 GeV²
 ≈ 20%
- sea quark contribution, including interference with gluons, non-negligible 25% at $O^2 = 4 \text{ GeV}^2$

Exclusive ρ^0 production at 5.75 GeV from CLAS

 $\begin{array}{c} e~p \rightarrow e~p~\pi^+~(\pi^-) \\ \text{strong interference with}~\Delta^{++}\pi^-~\text{production}~+~f_0(980)~+~f_2(1270) \\ \text{strong correlation between}~Q^2~\text{and}~x \\ t_{\text{min}}~\text{increases with}~Q^2~\text{and}~x~(>1.0~\text{GeV}^2~\text{at}~x>0.5) \\ \end{array}$

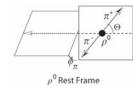
Longitudinal cross section $\sigma_L(\gamma^*p \to \rho^0_L p)$ and various GPD contributions

for the bins where data dominated by small t


Transverse target spin asymmetry for exclusive ρ^0 production

Give access to GPD E related to the orbital angular momentum of quarks

$$\frac{1}{2} \int_{-1}^1 dx \; x \; \left[H_{\!\! q}(x,\xi,t) + E_{\!\! q}(x,\xi,t) \right] \stackrel{t \rightarrow 0}{=} \; J_q \; = \; \frac{1}{2} \Delta \Sigma + \frac{\mathbf{L_q}}{\mathbf{L_q}} \qquad \qquad \text{Ji's sum rule}$$


So far GPD E poorly constrained by data (mostly by Pauli form factors)

The asymmetry defined as
$$A_{UT}(\varphi, \varphi_s) = \frac{1}{S_T} \frac{d\sigma(\varphi, \varphi_s) - d\sigma(\varphi, \varphi_s + \pi)}{d\sigma(\varphi, \varphi_s) + d\sigma(\varphi, \varphi_s + \pi)}$$

to disentangle contributions from γ_L and γ_T the distribution of ρ^0 decay polar angle needed in addition

Eur. Phys. J.C 41, 515 (2005)

Method for L/T separation used by HERMES

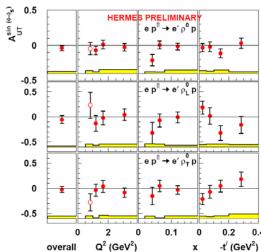
A. Rostomyan and J. Dreschler arXiv:0707.2486

Angular distribution $W(\cos \theta, \phi, \phi_s)$ and Unbinned Maximum Likelihood fit

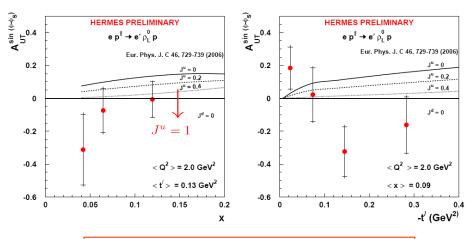
where
$$A_{UU,\rho L(\rho T)}(\varphi) = A_{UU,\rho L(\rho T)}^{\cos(\varphi)} \cos(\varphi) + A_{UU,\rho L(\rho T)}^{\cos(2\varphi)} \cos(2\varphi)$$

 $A_{UT,\rho L(\rho T)}(\varphi) = A_{UT,\rho L(\rho T)}^{\sin(\varphi-\varphi_S)} \sin(\varphi-\varphi_S) + \dots$ (5 additional terms $A_{UT,\rho L(\rho T)}^{\sin(m\varphi\pm\varphi_S)} \sin(m\varphi\pm\varphi_S)$)

- o $A_{UU,\rho L(\rho T)}^{\cos(\varphi)}$ and $A_{UU,\rho L(\rho T)}^{\cos(2\varphi)}$ obtained from SDMEs $r_{00}^{5}, r_{11}^{5}, r_{00}^{1}, r_{11}^{1}$
- o 2 x 6 = 12 parameters $A_{UT,\rho L(\rho T)}^{\sin(m\varphi\pm\varphi_S)}$ from the fit

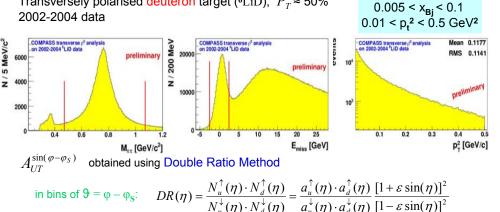

$$A_{UT,\rho L}^{\sin(\varphi-\varphi_S)} = -\frac{\operatorname{Im} \sigma_{00}^{+-}}{\sigma_L} \sim \operatorname{Im} \left(\mathsf{E}^{\star}_{\mathsf{M}}\mathsf{H}_{\mathsf{M}}\right) / |\mathsf{H}_{\mathsf{M}}|^2$$

a prerequisite for the method: determination of acceptance correction as a function of $\;cos\;\theta,\,\phi$ and ϕ_s


ρ^{0} transverse target spin asymmetry from HERMES

Transversely polarised proton target, $P_T \approx 75\%$ 2002-2005 data. 171.6 pb⁻¹ $1 < Q^2 < 7 \text{ GeV}^2$ $W^2 > 4 \text{ GeV}^2$ $0.023 < x_{Bj} < 0.4$ $|t'| < 0.4 \text{ GeV}^2$

ρ^0 transverse target spin asymmetry from HERMES



 $\, \succ \,$ in a model dependent analysis data favours positive $J_{\mathbf{u}}$

in agreement with DVCS results from HERMES cf. talk by W.-D. Nowak

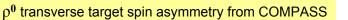
ρ⁰ transverse target spin asymmetry from COMPASS

Transversely polarised deuteron target (6 LiD), $P_T \approx 50\%$

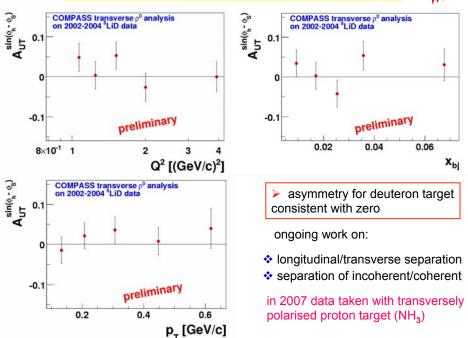
$$\cong C \cdot [1 + 4\varepsilon \sin(\eta)]$$

$$\cong C \cdot [1 + 4\varepsilon \sin(\eta)]$$

$$= u(d) \text{ are for upstream (downstream) cell of polarised target}$$


u (d) are for upstream (downstream) cell of polarised target arrows indicate transverse polarisation of corresponding cells

raw asymmetry
$$\varepsilon$$
 from the fit to $DR(\eta)$


$$A_{UT}^{\sin(\varphi-\varphi_S)} = \frac{\mathcal{E}}{f \cdot \langle P_x \rangle}$$

dilution factor $f \approx 0.38$

 $Q^2 > 1 \text{ GeV}^2$ W > 5 GeV

Longitudinal double-spin asymmetry for exclusive ρ^0 production (COMPASS)

arXiv:0704.1863[hep-ex] longitudinally polarised deuteron target (6 LiD), $P_T \approx 50\%$

wide range of Q^2 and x, W > 7.5 GeV, $0.15 < p_t^2 < 0.5 \text{ GeV}^2$

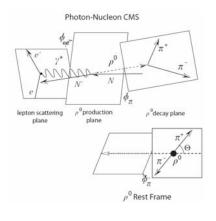
wide range of
$$Q^2$$
 and x, $W > 7.5 \text{ GeV}$, $0.15 < p_t^2 < 0.5 \text{ GeV}^2$

$$A_{LL}(\mu N \rightarrow \mu N \rho^0) = \frac{\sigma(\mu N)_{\uparrow \downarrow} - \sigma(\mu N)_{\uparrow \uparrow}}{\sigma(\mu N)_{\uparrow \downarrow} + \sigma(\mu N)_{\uparrow \uparrow}} = \frac{1}{f} \cdot \frac{1}{P_b} \cdot \frac{1}{P_t} \cdot A_{LL}^{raw}$$
 curve: $A_{\downarrow}^{\rho} = \frac{2A_{\downarrow}}{1 + (A_{\downarrow})^2}$ where $A_{\downarrow}^{\rho} = \frac{2A_{\downarrow}}{1 + (A_{\downarrow})^2}$ where $A_{\downarrow}^{\rho} = \frac{2A_{\downarrow}}{1 + (A_{\downarrow})^2}$ of $A_{\downarrow}^{\rho} = \frac{2A_{\downarrow}}{1 + (A_{\downarrow})^2}$ where $A_{\downarrow}^{\rho} = \frac{2A_{\downarrow}}{1 + (A_{\downarrow})^2}$ and $A_{\downarrow}^{\rho} = \frac{2A_{\downarrow}}{1 + (A_{\downarrow})^2}$ of $A_{\downarrow}^{\rho} = \frac{2A_{\downarrow}}{1 + (A_{\downarrow})^2}$ of $A_{\downarrow}^{\rho} = \frac{2A_{\downarrow}}{1 + (A_{\downarrow})^2}$ and $A_{\downarrow}^{\rho} = \frac{2A_{\downarrow}}{1 + (A_{\downarrow})^2}$ of A

- A₁^ρ on polarised deuterons consistent with 0
- \triangleright at small O^2 and x precise constraint on contribution of exchanges with unnatural parity

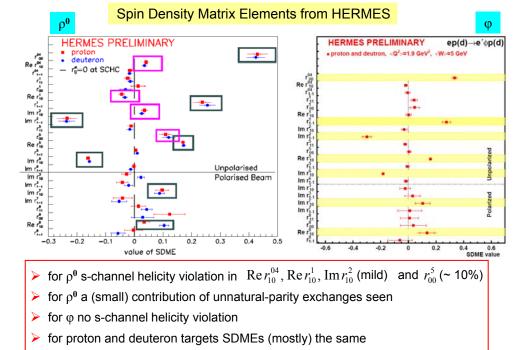
 $Q^2 [(GeV/c)^2]$

> at large $Q^2 A P$ related to GPDs (higher-twist) $\propto k_T^2 H_g / (Q^2 H_g)$ Goloskokov, Kroll (2006)


Spin Density Matrix Elements

VM angular distributions $W(\cos\theta, \phi, \Phi)$ depend on the spin density matrix elements (SDME) \Rightarrow 23 (15) observables with polarized (unpolarized) beam

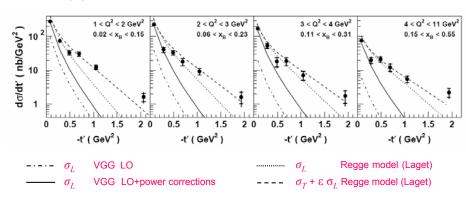
SDMEs are bilinear combinations of the helicity amplitudes


$$T_{\lambda m \ \lambda \gamma}(\gamma * N \longrightarrow mN)$$

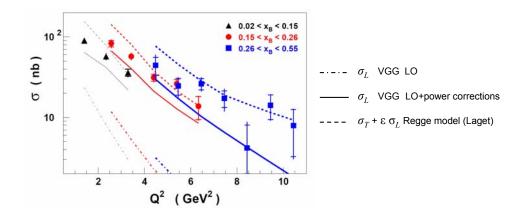
$$\lambda_{\gamma} = \pm 1, 0 \quad \lambda_{m} = \pm 1, 0$$
(averaged over nucleon spins)

describe helicity transfer from γ* to VM
 s-channel helicity conservation (SCHC)

- describe parity of t-channel exchange (NPE vs. UPE)
- impact on GPD studies determination of σ_L SDME $r_{00}^{04} \xrightarrow{SCHC} R = \frac{\sigma_L}{\sigma_T}$


1 < Q² < 11 GeV²

 $W^2 > 11 \text{ GeV}^2$ $0.02 < x_{Bj} < 0.55$ $|t'| < 2 \text{ GeV}^2$


$$e p \rightarrow e n \pi^+$$

1996-2005 data with proton target (unpolarised and polarised)

- L/T separation at HERMES not possible
- σ_T expected to be supressed as $1/Q^2$ dominance of σ_L at large Q^2 supported by Regge model (Laget 2005)
- \bullet at small $|t'| \stackrel{\sim}{E}$ dominates as it contains *t*-channel pion-pole

Exclusive π^+ production from HERMES

- LO calculations underestimate the data
- \triangleright data support magnitude of the power corrections (k, and soft overlap)
- ightharpoonup Regge calculations provides good description of the magnitude of σ_{tot} and of t and O^2 dependences

Beam spin asymmetry in exclusive π^0 production from CLAS

$$e p \rightarrow e p \pi^0$$

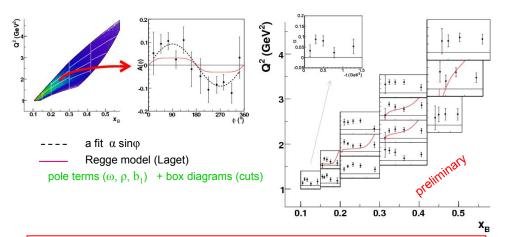
2005 data, E_o = 5.77 GeV, all final state particles measured Extended acceptance for γ 's due to installation of Inner Calorimeter

 $1 < Q^2 < 4.5 \text{ GeV}^2$ W > 2 GeV $0.1 < x_{Bi} < 0.55$ 0.09 < | t | < 1.8 GeV²

- essentially no experimental data for neutral pseudoscalar mesons in this range
- lacktriangledown at leading twist σ_I sensitive to GPDs \tilde{H}
- no *t*-channel pion-pole (in contrast to exclusive π^+ production)
- \diamond magnitude of σ_T contribution unknown

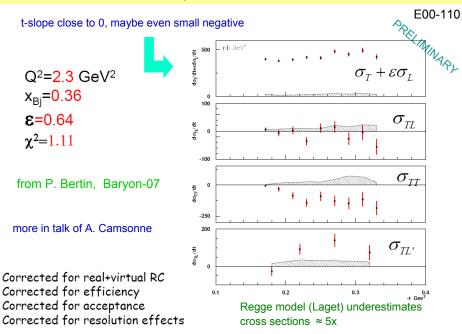
$$\frac{d^{2}\sigma_{y^{*}p\rightarrow p\pi^{0}}}{dt\,d\varphi} = \frac{1}{2\pi}\left(\frac{d\sigma_{T}}{dt} + \varepsilon\frac{d\sigma_{L}}{dt} + \varepsilon\cos2\varphi\frac{d\sigma_{TT}}{dt} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\varphi\frac{d\sigma_{TL}}{dt} + h\sqrt{2\varepsilon(1-\varepsilon)}\sin\varphi\frac{d\sigma_{TL}}{dt}\right)$$

 $h = \pm 1$ is the beam helicity


Beam Spin Asymmetry has the following φ dependence

m Spin Asymmetry has the following
$$\varphi$$
 dependence
$$A_{LU} = \frac{d^4 \vec{\sigma} - d^4 \vec{\sigma}}{d^4 \vec{\sigma} + d^4 \vec{\sigma}} = \frac{\alpha \sin \varphi}{1 + \beta \cos \varphi + \gamma \cos 2\varphi}$$

❖ any non-zero BSA would indicate *L-T* interference


i.e. contribution not described in terms of GPD's

Beam spin asymmetry in exclusive π^0 production from CLAS

- \triangleright first measurement of BSA for exclusive π^0 production above resonance region
- sizeable BSA (0.04 0.11) indicate that both transverse and longitudinal amplitudes participate
- \triangleright necessity for L/T separation and measurements at higher Q^2

Cross sections for exclusive π^0 production from JLAB HALL A DVCS Collab.

Prospects for more results on exclusive meson production

Other ongoing analyses of the data already taken

- ZEUS + H1 data from HERA II : ρ⁰, φ, J/ψ, Y cross sections + SDMEs
- HERMES : ρ^0 , ϕ SDMEs + unpolarised cross sections for full set of data including 2006-2007, expected factor of 2 gain in accuracy, hopefully with RD

 π^+ transverse target spin asymmetry (protons)

- COMPASS : ρ^0 TSA for polarised deuterons with $\gamma^*_{\ \ I}$ - $\gamma^*_{\ \ I}$ separation
- CLAS : ρ^+ , ϕ , π^+ , π^0 and η cross sections

Data being taken or expected soon

- COMPASS: p⁰ from transversely polarised proton target (2007) mesons from longitudinally polarised proton target (2007 (?))
- Hall A DVCS Coll.: π^0 Rosenbluth separation (2009)
- CLAS : π^0 and η cross sections and BSA (2008), LTA (2009)

> Future projects with impact on GPDs

- COMPASS: DVCS and DVMP with Recoil Detector, large LH (LD) target and extended

 EM calorimetry, our to 20 GeV², γ, ω, π and π, up to 7 GeV², (2010)
- EM calorimetry , ρ up to 20 GeV², γ , ω , φ , π and η up to 7 GeV² (2010) JLAB 12 GeV Upgrade (2014) cf. talk by B. Wojtsekhowski
- PANDA at FAIR (2014) cf. next-to-last talk on Saturday
- EIC (> 2014) cf. talk by H. Kowalski

Conclusions

- New precise data on cross sections and SDME's result in significantly more stringent constraints on the models for DVMP
- To describe present data on DVMP, both at large and small x, including power corrections (or higher order pQCD terms) is essential
- First experimental efforts in DVMP to constrain GPD E and quark orbital momentum
- A rich program of future experiments and projects with impact on studies of DVMP and GPDs

GPDs properties, link to DIS and elastic form factors

Generalized Parton distributions

$$H^q, E^q, \widetilde{H}^q, \widetilde{E}^q(x, \xi, t)$$

Link to form factors (sum rules)

Link to form factors (sum rules)
$$\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t), \int_{-1}^{1} dx E^{q}(x,\xi,t) = F_{2}^{q}(t)$$

$$\int_{-1}^{1} dx \tilde{H}^{q}(x,\xi,t) = g_{A}^{q}(t), \int_{-1}^{1} dx \tilde{E}^{q}(x,\xi,t) = h_{A}^{q}(t)$$
No similar relations for E^{q} and \tilde{E}^{q}

$$\int_{-1}^{\infty} dx \, \tilde{H}^{q}(x,\xi,t) = g_{A}^{q}(t) \,, \, \int_{-1}^{\infty} dx \tilde{E}^{q}(x,\xi,t) = h_{A}^{q}(t)$$

Link to DIS at $\xi = t = 0$

$$H^{q}(x,0,0) = q(x) = -\overline{q}(-x)$$

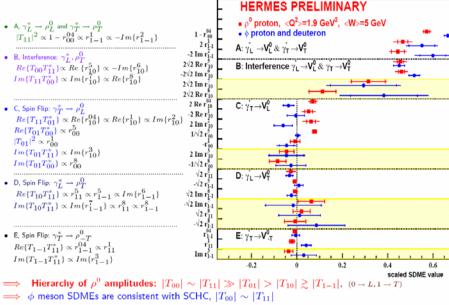
$$\tilde{H}^{q}(x,0,0) = \Delta q(x) = -\Delta \overline{q}(-x)$$

No similar relations for E^q and \tilde{E}^q

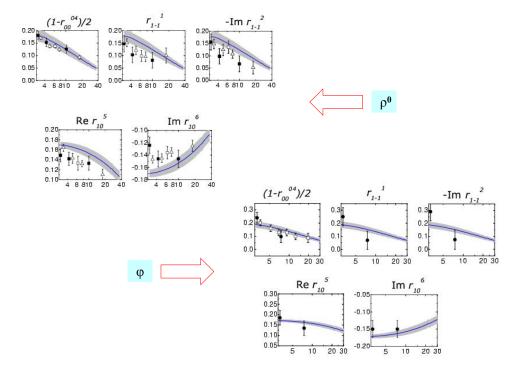
Access to quark angular momentum (Ji's sum rule)


$$J_{q} = \frac{1}{2} \Delta \Sigma_{q} + L_{q} = \frac{1}{2} \int_{-1}^{1} x dx \left[H^{q}(x, \xi, 0) + E^{q}(x, \xi, 0) \right]$$

$$R = \sigma_L/\sigma_T \ (Q^2) \qquad \text{- } \rho^0$$


- $\triangleright \sigma_L$ dominant at large Q^2
- > suppresion of σ_T at large Q^2 weaker than $1/Q^2$

Q²-dependence of SDMEs



Spin Density Matrix Elements from HERMES

A. Borissov, Baryon-07

