Deeply Virtual Compton Scattering : Experimental Review

Franck Sabatié CEA Saclay

EINN 07 - Milos Sept. 13th 2007

- Introduction
- How it all began
- New(er) HERMES results
- Experiments in JLab/Hall A
- Experiment in JLab/Hall B
- Short term experimental efforts: HERMES-recoil JLab

COMPASS GPD

[Longer term: JLab12]

GPDs from Theory to Experiment

Experimental observables linked to GPDs

Experimentally, DVCS is undistinguishable with Bethe-Heitler

However, we know FF at low t and BH is fully calculable

Using a polarized beam on an unpolarized target, 2 observables can be measured:

$$\frac{d^4\sigma}{dx_B dQ^2 dt d\varphi} \approx \left| T^{BH} \right|^2 + 2T^{BH} \cdot \operatorname{Re}\left(T^{DVCS}\right) + \left| T^{DVCS} \right|^2$$

$$\frac{d^{4} \overrightarrow{\sigma} - d^{4} \overleftarrow{\sigma}}{dx_{B} dQ^{2} dt d\varphi} \approx 2T^{BH} \cdot \operatorname{Im}(T^{DVCS}) + \left[\left| T^{DVCS} \right|^{2} - \left| T^{DVCS} \right|^{2} \right]$$
At low energy,
$$|T^{DVCS}|^{2} \text{ supposed small}$$

Ji, Kroll, Guichon, Diehl, Pire, ...

Into the harmonic structure of DVCS

Deep Exclusive experiments

Published or Finalized 2001		Published or close to be		Analysis in progress	2008 – 2009	2010?	2013?	
HERMES 27 GeV	CLAS 4-5 GeV	CLAS 5.75 GeV	Hall A 6 GeV	CLAS 6 GeV	HERMES	JLab	COMPASS	JLab@ 12GeV
$\frac{DVCS}{BSA + BCA}$ $\frac{\pm nuclei}{BSA}$ $\frac{\pm Polarized}{Larget}$ $\frac{\pm Polarized}{DVCS}$ $ep \rightarrow epp$ $\sigma_{L} \pm DSA$	DVCS BSA	DVCS DDVCS $\Delta DVCS$ D2VCS Polarized DVCS $ep \rightarrow epp_L$ $ep \rightarrow ep\pi^0/n$ $ep \rightarrow en\pi^+$ $ep \rightarrow ep\Phi$	<u>рvcs</u> <u>proton</u> <u>neutron</u> <u>ер→ерπ⁰</u>	DVCS Proton	DVCS BSA+BCA With recoil detector	<u>Hall A</u> <u>DVCS²</u> CLAS BSA+TSA	DVCS σ+BCA With recoil detector	EVERYTHING, with more statistics than ever before

More information for underlined items by: A. Camsonne, W. Dieter Nowak, A. Sandacz

Special case of the asymmetry

<u>The asymmetry can be written as:</u>

$$\frac{d^{4} \overrightarrow{\sigma} - d^{4} \overleftarrow{\sigma}}{d^{4} \overrightarrow{\sigma} + d^{4} \overleftarrow{\sigma}} = \Gamma_{A} \left(x_{B}, Q^{2}, t \right) \frac{s_{1}^{I} \sin \varphi + s_{2}^{I} \sin 2\varphi}{c_{0}^{I} + c_{0}^{BH} + (c_{1}^{I} + c_{1}^{BH}) \cos \varphi + \dots}$$

Pro: easier experimentally, smaller RC, smaller systematics

<u>Con:</u> direct extraction of GPDs is model- (or hypothesis-) dependent (denominator complicated and unknown)

It was naturally the first observable extracted from non-dedicated experiments...

Published non-dedicated results on A_{LU} and A_{UL}

HERMES: PRL 87, 182001 (2001)

Both results show, with a limited statistics, a sin ϕ behavior (necessary condition for handbag dominance)

In the A_{LU} result, models (VGG) tend to over-estimate the data

HERMES published (p) or unpublished (d) results on the BCA

HERMES preliminary results for A_{UL} and A_{UT}

E00-110 experimental setup and performances

- 75% polarized 2.5uA electron beam
- 15cm LH2 target
- \cdot Left Hall A HRS with electron package
- 11x12 block PbF2 electromagnetic calorimeter
- 5x20 block plastic scintillator array

$$\int Lu \cdot dt = 13294 \, \mathrm{fb}^{-1}$$

Kin	Q^2	x_B	θ_{γ^*}	-W
	(GeV^2)		(deg.)	(GeV)
1	1.5	0.36	22.3	1.9
2	1.9	0.36	18.3	2.0
3	2.3	0.36	14.8	2.2

Difference of cross-sections

Q² dependence and test of scaling

No Q^2 dependence using BMK separation: strong indication for scaling behavior and handbag dominance

Twist 4+ contributions are smaller than 10%

Total cross-section

DVCS on the neutron in JLab/Hall A: E03-106

E1-DVCS with CLAS : a dedicated DVCS experiment in Hall B

E1-DVCS kinematical coverage and binning

E1-DVCS : Asymmetry as a function of x_{B} and Q^2

E1-DVCS : $A_{LU}(90^{\circ})$ as a function of |t| + models

E1-DVCS : Cross-sections over a wide kinematical range

PhD Thesis H.S. Jo

The HERMES recoil detector: towards « true » exclusivity

COMPASS at the horizon 2010

Summary

After 7 years of worldwide experimental efforts on DVCS:

-It is rather firmly established that leading twist contribution seems to dominate unlike in the meson case, and very similarly to DIS.

-GPD models such as VGG do not reproduce well most observables and it is now the ideal time to get the theory/phenomenology up to speed with the experimental side.

-It is only by a strong and common effort between theorists (modelists) and experimentalists that we will gain information about the GPDs themselves : disentangling GPDs from observables is a considerable challenge.

-The future 6 GeV and 12 GeV data from JLab, along with data coming from the analysis of recoil-detector-enabled data from HERMES and COMPASS will bring an amazing quantity of clean data in the next 8 years. We need to refine our analysis tools in preparation for this challenge !

Experimental Setup and proposed experiments at 11 GeV

Use of base CLAS12 equipment, including Inner Calorimeter (IC)

Beam Spin Asymmetry

Observables and their relationship to GPDs

Analysis - Looking for DVCS events

HRS: Cerenkov, vertex, flat-acceptance cut with R-functions

Calo: 1 cluster in coincidence in the calorimeter above 1 GeV

<u>With both</u>: subtract accidentals, build missing mass of (e, γ) system

Analysis - π° subtraction effect on missing mass spectrum

Using $\pi^0\!\!\to\!\!2\gamma$ events in the calorimeter, the π^0 contribution is subtracted bin by bin

Analysis - Exclusivity check using Proton Array and MC

Using Proton-Array, we compare the missing mass spectrum of the triple and double-coincidence events.

The missing mass spectrum using the Monte-Carlo gives the same position and width. Using the cut shown on the Fig., the contamination from inelastic channels is estimated to be under 3%.

