Measurement of the γ n(p) \rightarrow K ⁺ Σ^- (p) reaction at Jefferson Lab

Sergio Anefalos Pereira

Laboratori Nazionali di Frascati

(for the CLAS Collaboration)

Contents

- Physical Motivation
- CLAS/JLAB
- Analysis Procedure
- Channel Identification
- Preliminary Results
- Summary

Physics Motivation

- Many baryon resonances are predicted studying the channels with π , but very few were established.
- It's important to provide data to investigate the spectrum of baryon (N* and Δ) resonances, with the decay in KY (Y $\equiv \Lambda$ or Σ).
- Although the branching fractions of most resonances to KY final states are small compared to 3-body modes there are some advantages:
 - More often 2-body final states are easier to analyze than 3-body system states,
 - Couplings of nucleon resonances to KY final states will differ from the $\pi N,\,\eta N$ and $\pi\pi N$ final states.

Goals of this work: study the $\gamma n \rightarrow K^+ \Sigma^-$ channel to

- 1) study the baryon resonances not otherwise revealed,
- 2) obtain information about couplings of nucleon resonances to KY final states

Physics Motivation

A comprehensive study of the electromagnetic strangeness production has been undertaken at Thomas Jefferson National Accelerator Facility (Jefferson Lab), using the CLAS detector. The related experiments are:

- $\gamma \mathbf{p} \rightarrow (\mathbf{g1})$ Differential Cross Sections for $\gamma p \rightarrow K^+ Y$ for Λ and Σ^0 hyperons *Phys. Rev. C 035202 (2006)*
- $\gamma p \rightarrow (g1)$ First Measurement of Beam-Recoil Observables C_x and C_z in Hyperon Photoproduction, *Phys. Rev. C* **75**, 035205 (2007),
- $\gamma d \rightarrow (g2)$ Study of $\gamma n \rightarrow K^+ \Sigma^-$ channel (very low statistics), <u>unpublished</u>
- $\gamma d \rightarrow (g10)$ Study of $\gamma n \rightarrow K^+ \Sigma^-$ reaction channel (present work)
- $\gamma \: d \to (g13)$ Kaon production on Deuteron using polarized photons

Total cross section $\gamma N \rightarrow K Y$

Milos, September 12 - 15, 2007

JLab Accelerator CEBAF

Superconducting recirculating electron accelerator

Continuous Electron Beam

- Energy 0.8-5.7 GeV
- 200µA, polarization 80%
- Simultaneous delivery to 3Halls

Hall B: Cebaf Large Acceptance Spectrometer + Tagger

G10 Experiment

Approved experiment for the Pentaquark search on Deuterium

- Data taking March 13 May 16, 2004;
- Tagged photons in the energy range from 0.8 GeV to 3.59 GeV;
- Target 24 cm long liquid deuterium at Z = -25cm;
- Trigger at least two charged particles in CLAS;
- Magnetic field 2 settings of Torus magnet 2250 A (low field) and 3375 A (high field);
- Integrated luminosity ~ 50 pb⁻¹.

Analysis procedure

- Studied channel $\gamma n \to K^+ \Sigma^-$
- Energy range (Εγ): from threshold to 3.59 GeV;
- $\theta_{\rm K}^{\rm \ lab}$ range: from 10 to 140 degrees;

Exclusive measurement: • detection of K⁺π and n • proton as a missing particle.

The key points:

The correct identification of K+
The correct identification of neutron

K⁺ identification

- Kaon identification cuts:
 - \Box vertex time cut ($\gamma_{time} K^+_{time}$);
 - $\Box \Delta\beta$ cut = $\beta_{TOF} \beta_P$, where β_{TOF} is calculated from time-of-flight detectors and β_P is computed from momentum, $p/\sqrt{(p^2+m_K^2)}$;

□ Kaon momentum cut ($p_k \ge 0.5$ GeV/c).

Σ^{-} identification

the missing particle is identified as MM(K⁺ π n) in γd → K⁺ π⁻ n X.
 a cut on the missing particle momentum is then applied (p < 0.25 GeV/c)

 after Kaon selection and missing momentum cut, the Σ⁻ is identified as M(π n) in γd → K⁺ π⁻ n X

Background subtraction

□ the background subtraction was done fitting the Σ - invariant mass distributions, in 100 MeV E γ bins, with a Gaussian (black curves) + second order polynomial (green curves).

The Gaussian fits the peak and the polynomial fits the background. The horizontal lines are the 3σ cuts on the Gaussian fit.

The real Σ - events are defined as the number of events within 3σ cut and above the polynomial fit.

Yield and Efficiency calculation

□ after background subtraction, the yield is extracted. Monte Carlo simulation was used to calculate the efficiency.

 \square the binning for the following results are: 200 MeV in Eq and 0.2 Cos θ^{CM}

Normalized Yield

Summary

> It is very important to investigate baryon resonances which decay into KY in the final state in order to study the lack of the predicted resonances;

> There are almost no experimental data on neutrons;

> The study of $\gamma n \rightarrow K^+ \Sigma^-$ reaction channel using the CLAS G10 data will give a set of results in gamma-neutron interactions in a wide E γ range from 1.1 to 3.6 GeV and angular range from 10 to 140 deg. in laboratory frame;

- > The preliminary results have shown that the studied channel can be well identified;
- > The yield corrected by the efficiency was extracted.

Next steps

 \Box change the binning to 100 MeV in Ey and 0.1 in Cos θ^{CM}

- \Box show the results in W bins
- $\hfill\square$ calculate the cross section
- estimate systematic errors