Measurement of $\frac{\Delta G}{G}$ at **COMPASS**

Susanne Koblitz, Universität Mainz

on behalf of the COMPASS Collaboration

- COMPASS Experiment
- $\checkmark \quad \frac{\Delta G}{G}$ Measurement
- Ø Open Charm analysis
- \checkmark High p_T Hadron Pairs
- Ø Conclusion

Susanne Koblitz, Universität Mainz – p.1/18

COMPASS Experiment

COMPASS Detector

Spin Structure of the Nucleon

Nucleon:

- composition: quarks, gluons
- \checkmark spin: $\frac{1}{2} \rightarrow$ spin composition?

$$\langle \mathbf{S}_{\mathbf{z}}^{\mathbf{N}} \rangle = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \langle L_{Z} \rangle$$

- quark contribution:
 - measured $\Delta\Sigma$ smaller than predicted
 - does not explain total nucleon spin
- ✓ How about the gluon contribution?

Photon-Gluon-Fusion

PGF Tags:

- \checkmark high p_T hadron pairs
 - \checkmark scale: $\sum p_T^2$ or Q^2
 - ø event selection: 2 hadrons
 - bigh statistics
 - competing processes
 - \Rightarrow difficult systematics
- - © no physical background
 - ③ challenge: **c**-quark tagging
 - \Rightarrow low statistics

based on event rates:

$$N_{u,d} = \mathbf{a} \Phi n \left(\sigma_{PGF} + \sigma_B \right) \left(1 + P_{\mathrm{T}} P_{\mathrm{B}} f \left(\mathbf{a}_{LL} \frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_B} \frac{\Delta G}{G} + a_{LL}^{B} \frac{\sigma_B}{\sigma_{PGF} + \sigma_B} A_B \right) \right)$$

- Ø 4 counting rates: 2 cells × 2 configurations: **double ratio:** $\delta = \frac{N_u \cdot N'_d}{N'_u \cdot N_d}$
- \checkmark flux normalisation: same flux for both cells $\rightarrow \frac{\Phi n_u \cdot \Phi' n_d}{\Phi' n_u \cdot \Phi n_d} = 1$
- \checkmark assume: stable acceptance ratio: $\frac{a_u \cdot a'_d}{a_d \cdot a'_u} = 1$
- \checkmark assume A_B negligible

 \Rightarrow solve for $\frac{\Delta G}{G}$ (2nd order equation)

- \checkmark needs: $P_{\rm T}$ \checkmark , $P_{\rm B}$ \checkmark , f \checkmark , analysing power a_{LL} & signal purity $\frac{\sigma_{PGF}}{\sigma_{PGF} + \sigma_{R}}$
- *open charm:* evaluated event by event
- \checkmark high p_T : average for full data sample

ø open charm tag: reconstructed *D*-mesons

- thick target: no decay vertex
- track based reconstruction
- 🖉 two channels:
 - $D^0 \to (K\pi)$, no D^* tag

•
$$D^{\star} \rightarrow (K\pi)\pi_{slow}$$

- selection criteria:
 - D^0 kinematics:
 - \checkmark momentum fraction $z_{D^0} > 0.2(0.25)$
 - \checkmark D^0 decay angle: $|cos\theta^{\star}| < 0.85(0.5)$
 - D^* tag: mass difference δm $3.1 \,\mathrm{MeV}/c^2 < \delta m - m_{\pi} < 9.1 \,\mathrm{MeV}/c^2$
 - PID (next slide)

Particle Identification in the RICH

COMPASS

- \checkmark RICH: K/π separation up to $\sim 50 \,\text{GeV}/c$
- ✓ for *D*-mesons:
 - kaon identification
 - pion: kaon exclusion
- Inew method applied $\rightarrow \text{log-likelihood}$
- \oplus background parametrisation
- \oplus number of photons in ring

Signal Purity

- Ø signal purity: $\frac{S}{S+B}$ taken from fit to spectra
- analysing power \leftrightarrow signal purity anticorrelated
 \Rightarrow subdivide sample into bins of a_{LL} for fit

Example of fit to spectra of D^* candidates (**COMPASS Preliminary**)

PGF events:
$$\frac{A_{\parallel}}{D} = \frac{\int d\hat{s} \Delta \sigma^{PGF}(\hat{s}) \Delta G(x_g, \hat{s})}{\int d\hat{s} \sigma^{PGF}(\hat{s}) G(x_g, \hat{s})} \approx < a_{LL} > \frac{\Delta G}{G}$$

D: Depolarisation factor

Open Charm:

- And scattering kinematics
- needs MC information
- \checkmark calculated from: *y*, Q^2 , *s*, *t*, *u*
- 🖉 MC (AROMA) vs Data: 🗸

- \checkmark **a**_{*LL*} from **observables**? \Rightarrow **neural network**
- \checkmark parametrisation with: *y*, Q^2 , z_{D^0} , $p_{TD^0}^{\gamma}$

$\frac{\Delta G}{G}$ from Open Charm (preliminary)

✓ calculate $\frac{\Delta G}{G}$ for each single year/channel ⇒minimises σ_{syst} Preliminary Result from COMPASS 2002-2004 data

$$\frac{\Delta G}{G} = -0.57 \pm 0.41$$

$$\mu^2 \sim 13 \left({\rm GeV}/c \right)^2, \, x_G \sim 0.15$$

Systematics

- J
- Solution False Asymmetry: non physical asymmetry from unstable acceptance: $\frac{a_u \cdot a'_d}{a_d \cdot a'_u} \neq 1$
- studied possible FAs from instabilies (in full mass range)

no effect seen! up to the level of statistical error

 \rightarrow contribution estimated from statistical precision

$$\delta\left(\frac{\Delta G}{G}\right)_{\rm FA} = 0.10$$

- Fit to Mass Spectra: results used for signal purity
- *many choices for fit: (background function, minimization, binning, ...)*
- \checkmark for systematics: perform different fits \rightarrow look at spread of $\frac{\Delta G}{G}$
 - \rightarrow contribution from fitting procedure

$$\delta\left(\frac{\Delta G}{G}\right)_{\rm fit} = 0.09$$

Systematics (2)

ø background asymmetry:

- no evidence found!(looser cuts, sidebands ...)
- \checkmark estimate effect: free parameter in $\frac{\Delta G}{G}$ evaluation

Monte Carlo: model dependency checked with:

- ø different charm masses
- different structure functions
- ø binning procedure:
- Itarget polarisation (5%):
- ø beam polarisation (5%):
- Ø dilution factor (5%):

 $\delta \left(\Delta G/G \right)_{\rm MC} = 0.05$

 $\delta (\Delta G/G)_{\rm BA} = 0.07$

 $\delta (\Delta G/G)_{\rm MC} = 0.04$ $\delta (\Delta G/G)_{\rm TP} = 0.03$ $\delta (\Delta G/G)_{\rm BP} = 0.03$ $\delta (\Delta G/G)_{\rm DF} = 0.03$

$$\frac{\Delta G}{G} = -0.57 \pm 0.41 \,(\text{stat}) \pm 0.17 \,(\text{syst})$$

 $\mu^2 \sim 13 \, ({\rm GeV}/c)^2$ and $x_G \sim 0.15$

High p_T Analysis

- \checkmark more physics background: Monte Carlo for **signal purity** and $\langle a_{LL} \rangle$
- Ø 2 separate analysis:
 - $Q^2 > 1 \,{\rm GeV^2}$:
 - Monte Carlo: LEPTO
 - © no resolved photons
 - ③ low statistics

$Q^2 < 1 \,{ m GeV^2}$:

- Monte Carlo: PYTHIA
- © resolved photon background
- © large statistics

Data and Monte Carlo

- current fragmentation: $x_F > 0.1$ and z > 0.1
- event kinematics:
 - 0.1 < y < 0.9
 - x < 0.05 (\leftarrow background asymmetry)

500k events selected in 2002-2004

Comparison: Data – Monte Carlo

High p_T : Results

- *✓* **Signal Purity:** $R_{PGF} \sim 30\%$ (determined from MC sample)
- \checkmark low Q^2 sample:
 - resolved photon contribution $\sim 50\%$
 - quark polarisation in photon unknown!
 - \Rightarrow estimated contribution from maximal and minimal polarisation
- Preliminary Results for low $Q^2: 2002 + 2003 + 2004$ DATA $\frac{\Delta G}{G} = 0.016 \pm 0.058 \, (\text{stat}) \pm 0.055 \, (\text{syst})$ $x_G \sim 0.085 \text{ and } \mu^2 = 3 \, (\text{GeV}/c)^2$
- Preliminary Results for high Q^2 :(2002+2003 DATA) $\frac{\Delta G}{G} = 0.06 \pm 0.31 \, (\text{stat}) \pm 0.06 \, (\text{syst})$ $x_G \sim 0.13 \text{ and } \mu^2 = 3 \, (\text{GeV}/c)^2$
- Ø systematics:
 - Ø Monte Carlo uncertainties outweigh experimental systematics

Susanne Koblitz, Universität Mainz – p.16/18

Conclusion

- \checkmark small $\int \Delta G dx_G$ prefered
- spin puzzle not yet solved!

OMP

Prospects

- Ø Open Charm: 2002-2004 data well understood
- ③ systematical uncertainty relatively small
- improving method: optimise event weighting & selection
- \checkmark High p_T Hadron Pairs: work ongoing to optimise event selection
- 2006 data: analysis started
- © improvements from hardware upgrades:
 - Iarger acceptance: magnet + tracking
 - RICH upgrade: improved background reduction
- ③ in both channels significant improvement of statistics expected:

$$\begin{split} &\delta(\Delta G/G)_{\text{high}\,p_T} \left(Q^2 < 1\,\text{GeV}^2\right) = 0.14\\ &\delta(\Delta G/G)_{\text{high}\,p_T} \left(Q^2 > 1\,\text{GeV}^2\right) = 0.045\\ &\delta(\Delta G/G)_{\text{OpenCharm}} \end{split} = 0.28 \end{split}$$

...assuming beam(2006)/beam(2004)=0.88