Status of the PrimEx Experiment: A Precision Measurement of the Neutral Pion Lifetime

7th European Conference on "Electromagnetic Interactions with Nucleons and Nuclei"

> Milos Island, Greece September 12-15, 2007

Dan Dale Idaho State University

Participating Institutions

North Carolina A&T State University University of Massachusetts University of Kentucky Idaho State University Jefferson Lab Hampton University MIT University of North Carolina at Wilmington **Catholic University of America** Arizona State University University of Virginia ITEP, Russia IHEP. Russia Norfolk State University University of Illinois Kharkov Inst. of Physics and Technology Chinese Institute of Atomic Energy IHEP, Chinese Academy of Sciences George Washington University Yerevan Physics Institute, Armenia Southern University at New Orleans Tomsk Polytechnical University, Russia University of Sao Paulo

23 institutions, 6 countries

A High Precision Measurement of $\pi^{o} \rightarrow \gamma \gamma$

- Physics motivation
- The Primakoff effect
- Experimental setup
- Towards high precision
- Current analysis
 - -event selection
 - -radiative width extraction
- Summary

The axial anomaly

$$\Gamma(\pi^0 \to \gamma \gamma) = \frac{\alpha_{\rm em}^2 N_c^2 M_\pi^3}{576 \pi^3 F_\pi^2}$$

 $F_{\pi} \simeq 93$ MeV, pion decay constant

Calculated in chiral limit $m_u, m_d \rightarrow 0$

Leading order corrections (Donoghue, 1989)

Real world

 $m_q \sim 5 \,\, {
m MeV}$

Corrections O(p4)

Current experimental and theoretical status

Expected PrimEx error bar, arbitrarily projected to the leading order chiral anomaly

Previous Experiment: The Direct Method (Phys. Lett., vol 158B, no. 1, 81, 1985)

- $\Rightarrow \pi^{\circ}$'s produced by 450 GeV protons in tungsten foils.
- $\Rightarrow \pi^{\circ}$ decays observed by detection of 150 GeV/c positrons produced by decay γ rays converting in foils.

$$Y(d) = N[A + B(1-e^{d\lambda})]$$

$$\Box \qquad Dalitz \ decay, \ \gamma \ conversion \ in \ first \ foil$$

Recent Theoretical Advances

(B.L. loffe and A.G. Oganesian, Phys. Lett. B647, p. 389, 2007)

- Sum rule approach to axial-vector-vector (AVV) form factor.
- f_{n^o} f_{n⁺} caused by strong interaction shown to be small.
- Eta width only input parameter.
- $\pi^{o} \eta$ mixing included.

 $\Gamma(\pi^{o} \rightarrow \gamma \gamma) = 7.93 \text{ eV} \pm 1.5\%$

Recent theoretical advances:

(Goity, Bernstein, Holstein, Phys. Rev. D66:076014, 2002.)

- χPT and $\frac{1}{N_c}$ expansion up to $O(p^6)$ and $O(p^4 \times \frac{1}{N_c})$.
- $SU_L(2) \times SU_R(2)$ broken by m_u, m_d .
- η' degree of freedom explicitly included.

Two types of correction:

1 isospin breaking
$$\alpha \frac{m_u - m_d}{m_s}$$
 or $\frac{N_c(m_u - m_d)}{\Lambda_{\chi}}$
 $\rightarrow O(p^4)$ (same as leading term)

 $\rightarrow O(p^6)$

2
$$\alpha \frac{m_{u,d}}{\Lambda_{\chi}}$$

Width increased by 4.5%

 $\Gamma^{NLO}_{\pi^0 \to \gamma\gamma} = 8.10 \pm 0.08 eV$

Recent theoretical advances (continued): (Ananthanarayan and Moussallam, JHEP 0205:052, 2002.)

SU(2):

$$A_{p^4} = \frac{\alpha}{\pi F}$$

with **F** in limit of $m_{u,d} \to 0$.

SU(3), $\pi^o - \eta$ mixing:

$$A_{p^4} = \frac{\alpha}{\pi F_o} [1 + \frac{m_d - m_u}{4(m_s - m)}]$$

with

$$m=rac{1}{2}(m_u+m_d)$$

F in limit of $m_{u,d,s} \rightarrow 0$.

To $O(p^6)$, they obtain:

$$A_{\pi^o \to \gamma\gamma} = A_{CA} \left[1 + \frac{m_d - m_u}{(m_s - m)} (0.93 \pm 0.12) - 0.34 \times 10^{-2} \pm 0.14 \times 10^{-2}\right]$$

 $\Gamma^{NLO}_{\pi^o \to \gamma\gamma} = 8.06 \pm 0.02 \pm 0.06 eV$

The Primakoff Effect

For high precision:

• Measure angular distribution well to separate various amplitudes

 \rightarrow new state of the art π° detector

- Measure on a variety of targets to test validity of background extraction ($\sigma_{\text{Primakoff}} ~\alpha~Z^{2}).$
- Tight photon energy ($\sigma_{\text{peak}}\,\alpha~E^4$) and flux control

 \rightarrow photon tagging

• Measure QED processes (Compton and pair production) to validate setup and analysis techniques.

Bremsstrahlung photon tagging

Tagging Ratios

Photon Calorimetry – the HYCAL calorimeter

1152 PbWO₄ and 576 lead glass modules

1.6% energy resolution

1-2 mm position resolution

In-beam calibration

Energy resolution – lead tungstate

Luminosity analysis efforts

- Electron counting (absolute flux)
- Pair spectrometer (relative tagging ratios)
- TAC (absolute tagging ratios)
- Target thickness
- Known cross sections (pair production, Compton)

Online Flux Monitoring

e⁺ - e⁻ pair spectrometer

Stability of relative tagging ratios

Monitored during production data taking.

Stability of relative tagging ratios

Pair production cross section

(1)Bethe-Heitler
(modified by nuclear
form factor).
(2)Virtual Compton
scattering.
(3)Radiative effects.

(4)Atomic screening.(5)Electron field pair production.

Angular distribution for Carbon

Primakoff Peak

UMass Analysis

Event selection:

Normalized probability distributions for

- HYCAL Tagger timing
- Invariant Mass
- Elasticity

Total Probability = Timing x Mass x Elasticity

Elasticity versus invariant mass

Hybrid mass

MIT/JLab Analysis: Event Selection

Angular distributions and background

Carbon

Lead

MIT/JLab Analysis: Radiative Widths for Carbon and Lead

ITEP/NCA&T Analysis: Radiative Width for Carbon

All possible cluster combinations.
Elasticity imposed.
HYCAL – tagger timing < 4 nsec.

ITEP/NCA&T Analysis: Radiative Width for Lead

ITEP/NCA&T Analysis: Radiative Width Combined Fit for Carbon and Lead

Sample Error Budget

Target thickness and density	0.05
Target material (impurity)	0.05
Admixture of ¹³ C	0.1
Photon flux	1.0
Beam energy uncertainty	0.13
Beam position uncertainty	negligible
Beam angle uncertainty	0.1
Beam divergence uncertainty	0.3
Branching ratio	0.03
Pion production angle resolution	0.25
HYCAL response function	0.5
HYCAL z uncertainty	0.4
Trigger efficiency	0.1
MC efficiency (limited statistics)	0.3
MC efficiency (target absorption)	0.27
Event loss – best in time cut	0.3
Energy cut for single photon	0.2
Energy cut for pion	negligilble
Timing cut	1.0
Pion mass fit	1.0
Coherent cross section energy dependence	0.1
Form Factor uncertainty	0.2
Incoherent production uncertainty	<1.0
Omega and rho subtraction	0.24
Total	2.2

<u>Summary</u>

- The neutral pion lifetime is a stringent test of confinement scale QCD.
- High precision of the experiment has pushed the limits of photon calorimetery, luminosity monitoring, and QED calculations.
- Experimental systematic errors controlled by pair production and Compton scattering.
- High quality data taken in late 2004. Three quasi-independent analyses.
- Our preliminary result is:

Γ = 7.93 eV ± 2.1% (stat) ± 2.2% (sys)

- In good agreement with QCD sum rule and ChPT predictions.
- Further studies of backgrounds underway.

Extra Slides

PDF1: HYCAL – Tagger timing

Previous Experiment: The Direct Method (Phys. Lett., vol 158B, no. 1, 81, 1985)

- $\Rightarrow \pi^{\circ}$'s produced by 450 GeV protons in tungsten foils.
- $\Rightarrow \pi^{\circ}$ decays observed by detection of 150 GeV/c positrons produced by decay γ rays converting in foils.

$$Y(d) = N[A + B(1-e^{d\lambda})]$$

$$\Box \qquad Dalitz \ decay, \ \gamma \ conversion \ in \ first \ foil$$

PDF 3: Invariant mass

PDF 2: Elasticity

Compton Scattering--Stability of Setup

	~
Error budget entry	Contribution
Target thickness and density	0.05
Target material (impurity)	0.05
Admixture of ^{13}C	0.1
Electron flux	1.0
Beam energy uncertainty within T_counters	0.13
Beam position uncertainty	negligible
Beam slope uncertainty	0.1
Beam divergence (width) uncertainty	0.3
π^0 branching ratio	0.03
π^0 prod. angle resolution	0.25
Hycal response function	0.5
Hycal z uncertainty	0.4
Trigger efficiency	0.1
MC efficiency simulations (limited statisctics)	0.3
MC efficiency simulations (absorption in target)	0.27
ADC channels status during the run	negligible
Misidentified beam particles	
Lost beam particles by	
taking only "the best in time beam candidate"	0.3
Energy cut for single γ	0.2
Energy cut for π^0	negligible
Timing cut	1.0
π^0 mass fit (exctraction of number of π^0 s)	1.
Coherent cross section dependence on energy	0.1
Formfactors uncertainty	0.2
Incoherent production uncertainty	
π^0 s from ω and ρ decays subtraction	0.24
Total	2.0