

Deeply Virtual Compton Scattering in Hall A

Alexandre Camsonne Hall A Jefferson Laboratory

CININI 2007

- Compton Scattering
- A unique approach
- High resolution and high precision on a limited kinematic range
 - Study of scaling with fixed $x_{bj} = 0.364$
 - 3 Q² values 1.5 GeV², 1.9 GeV², 2.32 GeV² with H target
 - 1 Q^2 values 1.9 GeV² with D target
- High resolution calorimeter
- Focus on cross section measurement
- Ensure exclusivity
- High luminosity

 $x_{Bj} = .364$ -t dependence $-t_{min}$ up to 0.4 GeV²

$$p(e, e'\gamma)p$$
 { $Q^2=2.3, 1.9, 1.5 \text{ GeV}^2 \text{ h}=+/-1$ {C. Muñoz-Camet al., PRL 97 (22002)
 $p(e, e'\gamma)n$ { $Q^2=1.9 \text{ GeV}^2 \text{ h}=+/-1$ Malek Mazouz Submitted to PRI
 $p(e, e'\pi^0)p$ $Q^2=2.3, 1.9 \text{ GeV}^2 \text{ h}=0, \text{ h}=+/-1$ High Q^2 complet

High Q² complet $Q^2=2.3$, 1.9 GeV² h=0, h=+/-1

subtraction done using the π^0 sample recorded in the calorimeter

Subtracted data fits exact simulation and the shape exclusive events: good understanding of the d Exclusivity in two arm

Δ 1232 N*1440

counts

-Normalizing H₂ and the same luminosity -Adding Fermi mom H2 data

2 principle sources o systematic errors :

-The contamination of electroproduction on

with zero at large -t

Neutron contribution is small and compatible

w insights from the first Hall A DVCS experiment

Importance of the DVCS²

$$d^{5}\vec{\sigma} + d^{5}\vec{\sigma} \propto BH^{2} + \operatorname{Re}(BH \cdot DVCS) + DVCS^{2}$$

focus on π^0 measurement

- Cross section measurement
- Improved π^0 detection for better systematical error on proton from the π^0 subtraction

rease in luminosity

- neter
- reased size of the calorimeter from 132 to
- 8 blocks for larger acceptance for the π^0

- nics
- proved trigger for optimal π^0 detection any π^0 were cut by the high threshold for VCS photons)
- ta transfer improvement to accommodate

Study of the importance of the DVCS² compared to the interference term by varying the incident beam energy

with a LT separation

 $d\Omega$

$$= \frac{d\sigma_T}{d\Omega} + \varepsilon \frac{d\sigma_L}{d\Omega} + \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{d\Omega} \cos\varphi + \varepsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\varphi + h\sqrt{2\varepsilon(1-\varepsilon)} \frac{d\sigma_{LT'}}{d\Omega} \sin\varphi$$

- Increased kinematical range Q^2 up to 9 GeV² at $x_{bi}=0$

- Same setup : same improvements as for 6 GeV prote
 - Better π^0 subtraction
- Interleave proton and deuterium runs to reduce systematics linked to subtraction
- Two energies
 - $DVCS^2$
 - LT separation for π^0
 - Real part of DVCS amplitude

_____ _

- Resolution achieved is sufficient to work in double arm
- Many results
- Proton DVCS
- Neutron/Deuteron DVCS
- π^0 electroproduction
- Approved experiments
- LT separation for the π^0
- Improvement of systematic from π^0 subtraction
- Evaluation of the importance of the DVCS amplitude

END

00 Hamamatsu

ges

110 cm from the target

1msr per block •Lead fluoride

•Pure Cerenkov : not sensit charged hadronic backgrou

•density 7.77 g.cm³

•X₀=0.93 cm length=20X₀ Molière radius = 2.2 cm

•Good radiation hardness

•1 Photoelectron per •Energy resolution 4

mmetric decay: minimum angle in lab of 4.4° at max π° energy

symmetric decay: sometimes one high energy cluster can be misindentified for a DVCS event

$$= N_{i_e}^+ - N_{i_e}^-$$

$$= L \left[\Im(C_n^{I-\exp}) \int_{x \in i_e} \Gamma_n \cdot \sin \varphi \otimes Acc + \Im(C_d^{I-\exp}) \int_{x \in i_e} \Gamma_d \cdot \sin \varphi \right]$$

ninosity MC sampling MC sar

includes real radiative corrections (external+internal)

