Two-photon exchange: hadronic picture

Peter Blunden University of Manitoba

EINN, Milos, March 12, 2007

Rosenbluth vs polarization transfer measurements of G_E/G_M of proton

Rosenbluth separation method

One-photon exchange cross section

$$d\sigma_0 = A \left(G_M^2 + \frac{\epsilon}{\tau} G_E^2 \right)$$
$$\tau \equiv \frac{Q^2}{4M^2} \qquad \qquad \frac{1}{\varepsilon} \equiv 1 + 2(1+\tau) \tan^2 \frac{\theta}{2}$$

- ϵ is virtual photon polarization
 - •Forward scattering $\epsilon{\rightarrow}$ 1

-Backward scattering $\epsilon \to 0$

- Extract G_E and G_M from linear ϵ dependence
- G_E suppressed as Q^2 increases
 - •Sensitive to small corrections linear in $\boldsymbol{\epsilon}$

Polarization transfer method $\vec{e} + p \rightarrow e + \vec{p}$

- Look at ratio of transverse (P_T) to longitudinal (P_L) components of recoil proton polarization using a longitudinally polarized electron beam
- Doesn't depend on absolute normalization
- Ratio relatively insensitive to radiative corrections (e.g. bremsstrahlung corrections cancel)

$$\frac{P_T}{P_L} = -\sqrt{\frac{2\epsilon}{\tau(1+\epsilon)}} \frac{G_E}{G_M}$$

in one-photon exchange approximation

inelastic amplitudes

Comments on radiative corrections

Radiative corrections different depending on whether electron or proton is detected.
 well understood
Soft bremsstrahlung
 involves long-wavelength photons

independent of hadronic structure

Box diagrams (TPEX $M_{\gamma\gamma}$) involve photons of all wavelengths

long wavelength (soft photon) part is included in radiative correction (IR divergence is cancelled with electron proton bremsstrahlung interference)

also independent of hadronic structure (by construction)

Hadronic approach: N, Δ , ... intermediate states

Obeys gauge invariance and crossing symmetry

Crossed box from box by $p_1 \rightarrow -p_3$ Consider $\Delta = \delta_{2\gamma} - \delta_{IR}(MT)$ $\delta_{2\gamma} = \frac{2\Re \left\{ M_{\gamma}^{\dagger} M_{2\gamma} \right\}}{|M_{\gamma}|^2}$

 $\delta_{IR}(MT)$ is standard Mo & Tsai correction (soft photon exchange), which is ϵ -independent & IR divergent

IR divergent terms cancel in Δ

Partonic (GPD) calculation of two-photon exchange contribution (Chen et al.)

"cat's ears"

valid at large Q^2 : δ^{hard}

handbag diagrams (one active quark)

to reproduce the IR divergent contribution at nucleon correctly (Low Energy Theorem): $\delta^{\rm soft}$

need cat's ears diagrams (two active quarks)

Nucleon elastic contribution (BMT)

Parametrize as sum of monopoles \rightarrow maintains analytic form of result

Numerical results not terribly sensitive to model for $G_{\rm E}$, or to details of $G_{\rm M}$

Corrections to unpolarized cross sections for Q²=1 to 6 GeV²

Effect on ratio R

NOT a refit of data

Simple model: correct Rosenbluth data assuming TPEX correction is linear in ε over a certain range

Effect on SLAC reduced cross sections at different Q^2 (normalized to dipole G_D^2)

SuperRosenbluth (JLAB) data

Effect on ratio of e⁺p to e⁻p cross sections (SLAC, Q² from 0.01 to 5 GeV²)

$$\vec{e} + p \rightarrow e + \vec{p}$$

Corrections to P_L and P_T at $Q^2=1$, 3, and 6 GeV²

 P_T/P_L will show some variation with ε , esp. at low ε JLab data taken at $\varepsilon \sim 0.7$ JLAB expt (Gilman) will measure P_T/P_L at low ε

GPD calculation predicts suppression of P_T/P_L

- Lorentz covariant form
- Spin $\frac{1}{2}$ decoupled
- Obeys gauge symmetries

 $p_{\mu}\Gamma^{\alpha\mu}(p,q) = 0$ $q_{\alpha}\Gamma^{\alpha\mu}(p,q) = 0$

$$\Gamma^{\alpha\mu}_{\gamma\Delta\to N}(p,q) = \frac{ieF_{\Delta}(q^2)}{2M_{\Delta}^2} \{ g_1(g^{\alpha\mu}\not\!\!/ q - p^{\alpha}\gamma^{\mu}q - \gamma^{\alpha}\gamma^{\mu}p \cdot q + \gamma^{\alpha}\not\!\!/ q^{\mu}) + g_2(p^{\alpha}q^{\mu} - g^{\alpha\mu}p \cdot q) + g_2(p^{\alpha}q^{\mu} - g^{\alpha\mu}p \cdot q) + (g_3/M_{\Delta})(q^2(p^{\alpha}\gamma^{\mu} - g^{\alpha\mu}\not\!\!/ p) + q^{\alpha}(q^{\mu}\not\!\!/ p - \gamma^{\mu}p \cdot q)\}\gamma_5T_3$$

3 coupling constants g_1 , g_2 , and g_3 At Δ pole: g_1 magnetic (g_2-g_1) electric g_3 Coulomb

Take dipole FF $~F_{\Delta}(q^2)$ = 1/(1-q^2/\Lambda_{\Delta}^2)^2~~with ~\Lambda_{\Delta}\approx 0.84~GeV

No infrared divergences (since $M_{\Delta} > M_{N}$)

The $\gamma N\Delta$ vertex was used in Dressed K-matrix model (Kondratyuk and Scholten) to describe pion photoproduction, πN scattering, Compton scattering at low to medium energies

 g_1 and g_2 taken from fits to E2/M1 ratio Coulomb contribution ~ $(g_3)^2$ and is small, independent of sign

- Smaller than nucleon contribution for reasonable range of parameters
- Becomes more important as Q² increases
- Partially cancels the nucleon only contribution at backward angles
- Reduces nonlinear ε dependence somewhat

Other resonances

- N (P11), △ (P33) + D13, D33, P11, S11, S31
- Parameters from dressed K-matrix model

Global Analysis (Arrington et al, nucl-ex/0707.1861)

- Incorporate TPE effects directly into analysis of Rosenbluth and PT data
- Extract G_E and G_M over range of Q^2
- Input: Estimate of Q² dependence of higher resonances from hadronic and GPD calculations

 $\delta_{2\gamma}^{*} = 0.01 (\epsilon-1) \ln Q^2 / \ln 2.2;$ Q²>1 GeV²

together with nucleon elastic contribution, with 100% uncertainty

- linear in ε
- decreases cross section by 1% at $Q^2 = 2.2 \text{ GeV}^2$
- Hadronic and GPD agree TPE corrections to PT data are small (~2%), but give opposite signs

 \rightarrow Don't include in analysis of PT data

Effect on ratio R

Extraction of $G_{\rm M}$ and $G_{\rm E}$

Effect on Parity-violating asymmetry in elastic e+p

 $\mathcal{A}_{PV} = \frac{2\Re \left\{ M_{\gamma}^{\dagger} M_Z \right\}}{|M_{\gamma}|^2} \quad \begin{array}{l} \text{Weak radiative corrections} \\ \text{interfere with } \mathbf{M}_{\gamma} \end{array}$ Electromagnetic radiative corrections interfere with M_{7}

Afanasev and Carlson used generalized form factors to analyze effect on A (GPD model)

$$\mathcal{A}_{PV} = -\frac{G_F Q^2}{e^2 \sqrt{2}} \frac{A_E + A_M + A_A + A'_M + A'_A}{\sigma_R}$$

 A_{M} and A_{A} are new terms

What is effect at low Q^2 (e.g. GO, Qweak, SAMPLE)?

Qweak At low Q², forward angles ($\epsilon \rightarrow 1$)

$$\mathcal{A}_{PV} \approx -\frac{G_F Q^2}{e^2 \sqrt{2}} \left(\mathbf{A} + \mathbf{B} Q^2 \right)$$

 A=(1 - 4 sin²θ_W) independent of hadron structure
B=hadronic correction

Qweak aims for a 2% measurement of A_{PV}

Though not obvious at first glance, A_M and A_A are of order Q^2

Our corrections to A vanish as $\epsilon{\rightarrow}$ 1

At Qweak kinematics, TPEX correction is -0.05%

 A_{PV} vs. ϵ for Q² = 0.1, 0.5, 1.0, 3.0 GeV²

γZ electroweak as well as TPE Hadronic model, Zhou et al. (hep-ph/0708.4297)

Outlook

Theory

- □ Connect real and imaginary parts of TPEX amplitude
 - more work needs to be done on hadronic models
- Look at sensitivity to off-shell form factors (preliminary work indicates probably not a large effect)
- \square Use phenomenological input from Compton scattering at high Q^2 to constrain high mass spectrum and/or merge with GPD

Experiment

- □ e⁺p/e⁻p ratio
- \square look for nonlinearity in ϵ
 - E04-019/E04-108 for PT
 - E05-017 for cross section (recently completed)

Collaborators: Melnitchouk, Tjon + Kondratyuk (N+ Δ), Kondratyuk (resonances) + Scholte (A_{PV})