Parity violation - Experiment

EINN 2007, Milos, Greece - September 14, 2007

<image>

Sebastian Baunack,

University of Mainz

- Strange Form Factors
- Experimental concepts
- 10 years of measurements
- Results, outlook

Jacques Arvieux

Strangeness in the nucleon

Constituent Quarks

QCD: sea quarks, gluons...

$< N \mid ss \mid N >$	Contribution of s-quarks to the mass
$< N \mid \overline{s} \gamma^{\mu} \gamma^5 s \mid N >$	DIS Contribution of s-quarks to the spin

 $< N \mid \overline{s} \gamma^{\mu} s \mid N >$

Parity violating electron scattering Contribution of s-quarks to the vector current

Strangeness in the Nucleon

Flavour Decomposition of form factors:

$$G_{E,M}^{p} = \frac{2}{3}G_{E,M}^{p,u} - \frac{1}{3}G_{E,M}^{p,d} - \frac{1}{3}G_{E,M}^{p,s}$$

$$G_{E,M}^{n} = \frac{2}{3}G_{E,M}^{n,u} - \frac{1}{3}G_{E,M}^{n,d} - \frac{1}{3}G_{E,M}^{n,s}$$

4 equations, 12 unknown quantities...

Proton and neutron form an isospin dublett with T=1/2 and T_3 =+1/2 (p) and T_3 =-1/2 (n)

$$G_{E,M}^{p,u} = G_{E,M}^{n,d}$$
$$G_{E,M}^{p,d} = G_{E,M}^{n,u}$$
$$G_{E,M}^{p,s} = G_{E,M}^{n,s}$$

Strangeness in the Nucleon

Charge symmetry:

$$G_{E,M}^{p} = \frac{2}{3}G_{E,M}^{u} - \frac{1}{3}G_{E,M}^{d} - \frac{1}{3}G_{E,M}^{s}$$

$$G_{E,M}^{n} = \frac{2}{3}G_{E,M}^{d} - \frac{1}{3}G_{E,M}^{u} - \frac{1}{3}G_{E,M}^{s}$$

4 equations, 6 unknown quantities...

Weak interaction

Exchange of photon and Z⁰ Universality of quark distribution

$$G_{E,M}^{p,Z} = (\frac{1}{4} - \frac{2}{3}\sin^2\Theta_W)G_{E,M}^u - (\frac{1}{4} - \frac{1}{3}\sin^2\Theta_W)G_{E,M}^d - (\frac{1}{4} - \frac{1}{3}\sin^2\Theta_W)G_{E,M}^s$$

Two more equations => Problem in principle solved

Parity violating electron scattering

Polarised electron beamUnpolarised target

$$\sigma \propto \left| M^{EM} + M^{NC} \right|^2 \approx 1 + 10^{-6} + 10^{-12}$$

Direct measurement not possible

=> Asymmetry measurement

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim \frac{|M^{NC}|}{|M^{EM}|} \sim \frac{Q^2}{(M_Z)^2} \approx 10^6$$

Extraction of form factors

Parity violating asymmetry (proton target):

$$A^{PV} = A_V + A_A + A_S$$

 $A_{V} = -\frac{G_{F}Q^{2}}{4\pi\alpha\sqrt{2}} \left((1 - 4\sin^{2}\Theta_{w}) - \frac{\varepsilon G_{E}^{p}G_{E}^{n} + \tau G_{M}^{p}G_{M}^{n})}{\varepsilon (G^{p})^{2} + \tau (G^{p})^{2}} \right)$

 $A_{A} = -\frac{G_{F}Q^{2}}{4\pi\alpha\sqrt{2}} \left[-\frac{(1-4\sin^{2}\Theta_{w})\sqrt{1-\varepsilon^{2}}\sqrt{\tau(1+\tau)}G_{M}^{p}G_{A}^{p}}{\varepsilon(G_{r}^{p})^{2}+\tau(G_{r}^{p})^{2}} \right]$ $A_{s} = -\frac{G_{F}Q^{2}}{4\pi\alpha\sqrt{2}} \left(-\frac{\varepsilon G_{E}^{p}G_{E}^{s} + \tau G_{M}^{p}G_{M}^{s}}{\varepsilon (G^{p})^{2} + \tau (G^{p})^{2}} \right) \qquad \text{Strange form factors}$

Standard model calculation

Measurement of form factors

Parity violation experiments

	e+p	e+p	e+4He	e+d
	forward	backward	forward	backward
Sample		0.1 (GeV/c) ²		0.04 (GeV/c) ²
				0.1 (GeV/c) ²
Happex	0.1 (GeV/c) ²		0.1 (GeV/c) ²	
	0.48 (GeV/c) ²			
	0.6 (GeV/c)²			
A4	0.1 (GeV/c) ²	0.23 (GeV/c) ²		0.23 (GeV/c) ²
	0.23 (GeV/c) ²	0.48 (GeV/c) ²		
	0.6 (GeV/c) ²			
G ⁰	(0.12 1.0)	0.23 (GeV/c) ²		0.23 (GeV/c) ²
	(GeV/c) ²	0.62 (GeV/c) ²		0.62 (GeV/c) ²

Experimental requirements

•Statistics:
$$A^{PV} \approx 10^{-6} \qquad \Delta A^{PV} = \frac{1}{P \cdot \sqrt{N}}$$

 $N \approx 10^{12} - 10^{14}$

Large cross section and/or large acceptance, high luminosity, high polarisation

Systematics:

- Separation of elastic and inelastic events
- Control of helicity correlated beam properties

Parity experiments

First cycle (1998 - 2005):

- SAMPLE
- \cdot HAPPEX I
- A4 forward angle
- \cdot G⁰ forward angle

SAMPLE, MIT-Bates

•Backward angle, Q²=0.1 (GeV/c)²

• Large acceptance (1.5 sr) air cherenkov detector

•Beam energy (200 MeV) near pion threshold

•Background measurements with shutters closed

•Hydrogen and Deuterium target

HAPPEX, Jefferson Lab

•Small forward angles, Q^2 =0.48 (GeV/c)² and 0.1 (GeV/c)²

- Small acceptance (5 msr) high resolution spectrometer
- Hydrogen and Helium target

HAPPEX I - Results

 $Q^2=0.48 (GeV/c)^2$

· E=3.3 GeV, θ =12.3 °

Experimental result:
 A^{PV} = (-15.05 ± 0.98 ± 0.56) ppm
 Linear combination of G_E^s and G_M^s:
 G_E^s + 0.39 G_M^s=0.025 ± 0.020 ± 0.014

A4 Experiment, MAMI

•Forward and backward angles, $Q^2=0.1 (GeV/c)^2$, 0.23 (GeV/c)2

- \cdot Large acceptance (0.6 sr) $\mathsf{PbF}_{\mathsf{2}}$ cherenkov calorimeter
- •Measurement of full energy spectrum (elastic + inelastic)
- •Separation of elastic via cut
- •Hydrogen and Deuterium target

A4 Experiment at MAMI

I=20 µA, P=80%

Forward angle configuration

Compton Backscatter Polarimeter

Measured asymmetry: $A_{\mathrm{exp}} = P \cdot A_{PV}$

=> P has to be measured! Principle of compton backscatter polarimeter

Compton Backscatter Polarimeter

Compton Backscatter Polarimeter

PbF₂ Calorimeter

 $\cdot 1022 \; \text{PbF}_2$ crystals in 7 rings and 146 frames

•Pure Cherenkov radiator, intrinsically fast

Solid angle:

Ω=0.6 sr, $0 \le \Phi \le 2\pi$

 $30^{\circ} \le \Theta \le 40^{\circ} \text{ or } 140^{\circ} \le \Theta \le 150^{\circ}$

 $\boldsymbol{\cdot} \text{Total rate} \approx 100 \text{ MHz}$

•Sum of 3x3 crystals

Transmission Compton Polarimeter (TCP)

24

A4, forward angles

PbF₂ Energy spectrum

Single channel, Θ =34.1°

E=854.3 MeV

Q²=0.23 (GeV/c)²

 $I = 20\mu A$, t = 2.5min

Forward angle measurements

A4, forward angles

PbF₂ Energy spectrum

Single channel, Θ =34.1°

E = 570.4 MeV

 $Q^2 = 0.11 (GeV/c)^2$

$$I = 20\mu A$$
, $t = 2.5min$

Also clean extraction of elastic events

Analysis

Analysis

•Elastic events for one run: $N^+ = \sum_{c=1}^{1022} N_c^+, N^- = \sum_{c=1}^{1022} N_c^-$ •Experimental Asymmetry: et density

$$A_{ex} = \frac{\frac{N^+}{\rho^+} - \frac{N^-}{\rho^-}}{\frac{N^+}{\rho^+} + \frac{N^-}{\rho^-}} \qquad \text{with } \rho \text{ targe}$$

$$A_{ex} = P \cdot A_{phys} + \sum_{i=1}^{6} a_i X_i$$

P: Beam polarisation X_1 : Current asymmetry X_4 : Horiz. angle diff. X₂: Horiz. position diff. X₅: Verti. angle diff. X₃: Verti. Position diff. X₆: Energy diff.

•Determination of a, via multiple linear regression

A4@MAMI, forward angle

G⁰, Jefferson Lab

- Forward and backward angles
- Forward angles: Simultaneous measurement of several Q² between 0.12 (GeV/c)² and 1.00 (GeV/c)2
- •Backward angles: Q²= 0.23 and 0.62 (GeV/c)2
- Large acceptance (0.9 sr) recoil protons spectrometer
- Time of flight measurement
- •Hydrogen and Deuterium target

G⁰, Jefferson Lab

Forward angle: Linear combinations of $G_{E}^{s} + \eta G_{M}^{s}$

Parity experiments

<u>Second cycle (2005 - 2008)</u>

- HAPPEX II, HAPPEX III
- A4 backward angle
- G⁰ backward angle

HAPPEX II (second generation)

- Installation of septum magnets E=3 GeV θ =6° Q² ~ 0.1 (GeV/c)²
- Hydrogen and Helium target

Hydrogen : G^{s}_{E} + αG^{s}_{M}

⁴He: Pure
$$G^s_{\mathsf{E}}$$
: $A^{PV} = -\frac{A_0}{2} \left(2\sin^2\theta_W + \frac{G^s_E}{G^{P\gamma}_E + G^{n\gamma}_E} \right)$

HAPPEx II (second generation)

- <u>⁴He Preliminary Results</u> Raw Parity Violating Asymmetry A_{raw} correction ~ 0.12 ppm Q² = 0.07725 ± 0.0007 GeV² A_{raw} = 5.253 ppm ± 0.191 ppm (stat)
- ¹<u>H Preliminary Results</u> Raw Parity Violating Asymmetry A_{raw} correction ~ 0.11 ppb
 Q² = 0.1089 ± 0.0011GeV²
 A_{raw} = -1.418 ppm ± 0.105 ppm (stat)

A4 Detector rearrangement

A4 backward measurements

Additional background in the energy region of the elastic peak:

Photons from π^0 decay. Pions coming from

- Pion electroproduction
- Pion photoproduction

Additional scintillator system

Separation of charged and neutral particles

Backward angle

PbF₂ Energy spectrum

Single channel, Θ =145.9°

E=315.1 MeV

Q²=0.23 (GeV/c)²

 $I = 20\mu A$, t = 2.5min

Backward angle

Background subtraction

44

Result of Monte Carlo Studies

Conversion of photons (about 10%)

• Energy loss of converted photons

45

Result of Monte Carlo Studies

•Cut choosen:

2% contribution of background in elastic cut

Backward angle, beam parameter

Asymmetries and differences in current, position, angle, energy: The smaller, the better

Backward angle, beam parameter

Beam parameter	False Asymmetry A _{False}
(helicity correlated)	(Estimation)
Current Asymmetry A_{I} -0.29 ppm	0.29 ppm
Horiz. position diff. $\Delta X\;$ -0.09 μm	< 0.1 ppm
Verti. position diff. ΔY $$ -0.02 μm	< 0.1 ppm
Horiz. angle diff. Δ X' -9.1 nrad	< 0.1 ppm
Verti. angle diff. Δ Y' -2.5 nrad	< 0.1 ppm
Energy diff. ΔE -0.48 eV	< 0.1 ppm

A4, $Q^2=0.23$ (GeV/c)² backward Coincidence data 50 □ Asymmetries (ppm) About 1000 h **Coincidence asymmetries All sectors** 40 E of data 30 N_{coinc}=2.1x10¹² 20 10E 0 -10 **** -20 -30E Preliminary -40 -50 10 12 14 0 2 4 6 8 Sample No.

 A_{coinc} = (-15.96 ± 0.93_{stat} ± 0.63_{syst}) ppm χ 2/NDF=14.57/14=1.04

$Q^2=0.23$ (GeV/c)² backward

Determination of A^{PV} : $A_{coinc} = (1 - \varepsilon) \cdot A_{PV} + \varepsilon \cdot A_{Back}$

No strangeness: A_0 =(-16.27 ± 1.22) ppm

 $G_{\rm M}^{\rm s}$ + 0.25 $G_{\rm E}^{\rm s}$ = 0.004 ± 0.146

Preliminary

G⁰ Backward program

=> Wait for the next talk!

Summary and Outlook

•Parity violation experiments are a well established technique

•First round of PV Experiments (SAMPLE, HAPPEX I, A4, G^0) ruled out large strange contributions, at least at $Q^2 < 0.5$ (GeV/c)²

 $\boldsymbol{\cdot}$ Second round puts clear constraints on strangeness contribution

•A4 deuterium program finished at end of 2007
•Strangeness at higher Q²? => HAPPEX III
•New generation of PV experiments to start: Q_{weak}, PRex