Proton Form Factors measurements in the Time-like Region

Fabio Anulli

INFN – Laboratori Nazionali di Frascati On behalf of the *BABAR* Collaboration

7th European Research Conference on *Electromagnetic Interactions with Nucleons and Nuclei* EINN 2007 *September 10-16, 2007 Milos*

Outline:

- > BABAR measurement of $e^+e^- \rightarrow p A$ by means of ISR events
 - analysis strategy
 - cross section and BF of charmonium states
- > Form Factors:
 - definitions and main properties
 - measurement of the ratio $|G_E/G_M|$
 - review of $|G_M|$ measurements
 - asymptotic behavior \rightarrow fit to pQCD predictions
 - puzzling behavior at *pÅ* threshold
 - Λ and neutron time-like form factors
- > Conclusions and perspectives

Initial State Radiation: motivations

ISR studies at the $\Upsilon(4S)$ can yield the same observables as the low energy e^+e^- experiments

- > precise measurements of e^+e^- cross sections at low c.m. energy
- > hadron spectroscopy for $1 < \sqrt{s} < 5$ GeV
- form factors (this talk)
- > new states discovery (e.g. Y(4260))
- measurement of the ratio

$$(s) = \frac{\sigma_{e^+e^- \to hadrons}(s)}{\sigma_{e^+e^- \to \mu^+\mu^-}(s)}$$

ISR cross section

ISR in BABAR

- uniform data quality all-over the energy range no systematics from point-to-point normalization
- statistically very competitive sample
 - ➤ largest sample of $e^+e^- \rightarrow p Å$ events collected up to now
- c.m. boost
 - > at threshold $\varepsilon \neq 0$
- ➢ hard photon detected:
 - event tagging ==> loose hadron selection
 - hadronic system at wide angle (in LAB ref)
 - large geometric acceptance
 - full *pÅ* angular coverage (in *pÅ* c.m.)
- higher background

Milos, September 12, 2007

Events selection:

- > require "hard" γ + 2 tracks of opposite charge identified as protons
- > $\pi/K/p$ discrimination using dE/dx and Cherenkov angle
- \triangleright kinematic fit requiring p and E conservation,
- \triangleright select signal according to fit χ^2

Monte Carlo simulations used for detector acceptances, selection efficiencies and estimates of different background sources:

- ➢ ISR generators based on:
 - H.Czyz et al, Eur. Phys. J. C 35(2004)527
- multiple ISR soft photons:
 - M.Caffo et al, N. C. 110A(1997)515
- final state radiation: (PHOTOS)
 - E. Barberio et al, Comp. Phys Comm. 66(1991)115

- 4025 events selected in 232 fb⁻¹ of data
- ∼6% residual background, dominated by non ISR $e^+e^- → pÅ \pi^0$

$e^+e^- \rightarrow p \dot{A} \gamma$: efficiency

- Determined by MC simulation \succ and corrected by Data/MC differences
- Corrections for:
 - χ^2 shape
 - nuclear interactions with detector material
 - particle-ID
 - photon detection (use $e^+e^- \rightarrow \mu^+\mu^-\gamma$ data)
 - dependence on G_E and G_M
 - Triggering

$e^+e^- \rightarrow p A \gamma$: cross section

Milos, September 12, 2007

$$\Gamma^{\mu}(q) = \gamma^{\mu} F_{1}(q^{2}) + \frac{\iota \sigma^{\mu\nu}}{2M_{N}} q_{\nu} F_{2}(q^{2})$$
Pouli (E) E E
Scobe EE: Electric (G) Mag

> Dirac (F₁) and Pauli (F₂) F.F. > Sachs FF: Electric (G_E), Magnetic (G_M) $F_1^{p}(0) = 1$ $F_2^{p}(0) = 1$ $G_E(q^2) \equiv F_1(q^2) + \frac{q^2}{4M^2}F_2(q^2)$ $F_1^{n}(0) = 0$ $F_2^{n}(0) = 1$ $G_M(q^2) \equiv F_1(q^2) + F_2(q^2)$

FF: Space-like and Time-like region

> Elastic scattering

$$\frac{d\sigma}{d\Omega}(q^2,\theta) = \frac{\sigma_M}{1-\tau} \left[G_E^2 - \tau \left(1 + 2(1-\tau) \tan^2 \frac{\theta}{2} \right) G_M^2 \right]$$

$$\sigma_M = \frac{\alpha^2 E' \cos^2 \left(\frac{\theta}{2} \right)}{4E^3 \sin^4 \left(\frac{\theta}{2} \right)} \qquad \tau = \frac{q^2}{4M^2}$$

Annihilation

$$\frac{d\sigma}{d\Omega}(q^2,\theta) = \frac{\alpha^2 \beta C}{4q^2} \left[(1 + \cos^2 \theta) |G_M|^2 + \frac{1}{\tau} \sin^2 \theta |G_E|^2 \right]$$

$$\beta = \sqrt{1 - \frac{1}{\tau}} \qquad C = \frac{y}{1 - e^{-y}}; \quad y = \frac{\pi \alpha M_p}{\beta q}$$

C: correction for Coulomb interaction at threshold. Not present in $e^+e^- \rightarrow n\ddot{A}$, $\Lambda\bar{\Lambda}$

Milos, September 12, 2007

FF properties: analyticity and asymptotic behavior

- > by definition, at threshold: $G_E (4m_p^2) = G_M (4m_p^2)$
- perturbative QCD constrains the FF asymptotic behavior

> pQCD + analyticity

$$q^2 \rightarrow -\infty \implies G_{E,M} \rightarrow \frac{\text{constant}}{q^4 \ln \left(\frac{q^2}{\Lambda_{QCD}^2}\right)^2}$$

$$q^2 \rightarrow \pm \infty \quad \blacksquare \quad G_{E,M}(q^2) = G_{E,M}(-q^2)$$

Milos, September 12, 2007

Measurement of the proton FF

- > The moduli of the FF in the time-like region can be derived from measurements of the cross sections of $e^+e^- \leftrightarrow p A$ processes
- > Many measurements both from $e^+e^- \rightarrow p A$ and $p A \rightarrow e^+e^-$ experiments
- > Most experiments collected very low statistics ==> impossible to disentangle $|G_E|$ and $|G_M|$

Extract $|G_M|$ from the total cross section under the arbitrary assumption $|G_M| = |G_E|$

$$\sigma = \frac{4\pi\alpha^2 \beta C}{3m_{p\bar{p}}^2} |F|^2, \quad |F| = \sqrt{|G_M|^2 + \frac{1}{2\tau} |G_E|^2}$$

Quantitative information on $|G_E|$ only by PS170 and *BABAR* (by measuring the ratio $|G_E/G_M|$ from angular distributions)

$$\frac{d\sigma}{d\cos\theta} \propto \left(1 + \cos^2\theta\right) + \tau \left|\frac{G_E}{G_M}\right|^2 \sin^2\theta$$

Milos, September 12, 2007

Time-like $|G_E/G_M|$ measurements

BABAR measured angular distribution from threshold up to $\sim 3 \text{ GeV}/c^2$

- > Observed maximum at m \cong 2 GeV/c2 (G_E dominance after threshold)
- Inconsistent with PS170 measurements at LEAR
- strong point in favour of ISR method: very weak angular dependence of detection efficiency

ulli

First successful measurements:

- 1973 ppbar @ ADONE (Frascati)
 - $e^+e^- \rightarrow p \mathring{A}$
- 25 events in 0.2 pb^{-1} of data at 4.4 GeV²

Milos, September 12, 2007

First successful measurements:

- 1973 ppbar @ ADONE (Frascati)
 - $e^+e^- \rightarrow p Å$
 - 25 events in 0.2 pb^{-1} of data at 4.4 GeV^2

70's and 80's:

- ELPAR exp. (CERN)
 - *pÅ* annihilations at rest
- DM1, DM2 @ DCI (Orsay)
- $e^+e^- \rightarrow p \mathring{A}$
- 0.7 pb⁻¹ of data collected
- first attempts to measure angular distributions

Experiments in the 90's :

- FENICE @ ADONE
- Mainly devoted to neutron FF measurement
- 69 $e^+e^- \rightarrow p \text{\AA}$ events in 4 q^2 bins

PS170 @ LEAR (CERN)

- First high statistics experiments
- \mathring{A} beam stopped in a liquid H target
- 3667 $p A \rightarrow e^+ e^-$ events in 9 q^2 bins
- Angular distribution measured compatible with |GE| = |GM|
- E760 and E835 (FNAL)
- $-p A \rightarrow e^+ e^-$ (fixed target)
- First measurements of FF at high q^2

Milos, September 12, 2007

- New *e⁺e⁻* colliders
- CLEO @ CESR (2005)
 - Only 14 events
- BES @ BEPC (2005)
 - 9 q² bins from 4 GeV² up to
 9 GeV² (~200 events total)
 - No angular measurements
 - Assume $|G_E| = |G_M|$
- **BABAR** (a) **PEP-II** (2006)
 - ISR events
 - \sim 4000 events divided in \sim 40 q² bins
 - Results presented assuming $|G_E| = |G_M|$

Closer look at the results:

Fit to the pQCD prediction (assuming $\Lambda = 0.3$ GeV):

> Asymptotic behavior holds already for $m_{pA} > 3 \text{ GeV}/c^2$

Closer look at the results:

Sharp drops at $m_{pA} \sim 2.2$ and 3.0 GeV, - no interpretations yet

- seen also in cross section distribution

Steep rise of the FF at threshold seen by **PS170** and *BABAR*

Why the rise of FF at threshold?

evts / 0.005 Gev/c²

0.0

BES measurement of $J/\psi \rightarrow p \AA \psi$

Sharp peak of m_{pA} at threshold

opposite C-parity

Fit consistent with a sub-threshold resonant structure with $J^{PC} = 0^{\pm \pm}$

 $(m \sim 1860 \text{ MeV/c}^2, \Gamma < 30 \text{MeV}),$

inconsistent with known states

PRL 91, 022001 (2003)

 $J/\psi \rightarrow p \mathring{A} \checkmark$

0.2 m_{nÅ}

2m

Similar behavior observed in the *pÅ* mass spectrum in processes with different dynamics:

Similar results on B decays published by **Belle:** PRL 88, 181803 (2002) PRL 89, 151802 (2002)

A possible explanation

The rise is the tail of a narrow resonance below threshold ==> Baryonium

This hypothesis can be tested:

• A meson V_0 , with vanishing coupling to e^+e^- , which decays trough a ρ/ω recurrence (V_1) , should show up as a dip in several hadronic cross sections

$$A \propto \frac{1}{s - M_1^2} \left(1 + a \frac{1}{s - M_0^2} a \frac{1}{s - M_1^2} + \dots \right)$$
$$A = \frac{s - M_0^2}{\left(s - M_1^2\right)\left(s - M_0^2\right) - a^2}$$

P.J. Franzini and F.J. Gilman (1985)

Milos, September 12, 2007

\mathbf{V}_{0}	M(MeV/ <i>c</i> ²)	Γ(MeV)
hadrons	~1870	10÷20
DM2	1930(30)	35(20)
FOCUS	1910(10)	37(13)
BABAR	1880(50)	130(30)
BABAR (π^0)	1860(20)	160(20)

Milos, September 12, 2007

Neutron Form Factor

- > Measurements only from FENICE and DM2 experiments
- > No Coulomb correction at threshold ==> $\sigma(s=4m_n^2)=0$

data - theoretical prediction comparison

	G_M^n / G_M^p
data	~ 1.5
naively	$\sim \mathbf{Q}_{\mathrm{d}}/\mathbf{Q}_{\mathrm{u}} = 0.5$
pQCD	< 1

Need to be clarified with new neutron FF measurements

Milos, September 12, 2007

Measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ cross section and Λ FF

Analyzed 232 fb^{-1} Signal: 204 ± 19 Background: 15 ± 3

Milos, September 12, 2007

Fabio Anulli

<u>2</u>4

$e^+e^- \rightarrow \Lambda \overline{\Lambda}$ angular distributions

> Extract $|G_E/G_M|$ from angular distributions:

$m_{\Lambda\Lambda}, GeV/c^2$	Ν	N _{bkg}	$ G_E/G_M $
2.23-2.40	120	3 ± 5	$1.73^{+0.99}_{-0.57}$
2.40-2.80	96	10 ± 6	$0.71_{-0.71}^{+0.66}$

> Compatible with $|G_E/G_M| = 1$, but also with results from proton FF

Milos, September 12, 2007

Λ polarization

- For the relative phase ϕ between G_E and G_M is different from zero, the outgoing baryons are polarized in the direction normal to the scattering plane
 - A.Z. Dubnickova *et al.*, Nuovo Cim. A109, 241 (1996), Brodsky *et al.* hep-ph/0310277 Polarization measured using correlation between the directions of the Λ

polarization vector and the momentum of decay proton in Λ rest frame

$$\frac{dN}{d\cos\theta_{p\xi}} = A(1 + \alpha_{\Lambda}\varsigma_{f}\cos\theta_{p\varsigma}), \quad \alpha_{\Lambda} = 0.642 \pm 0.013$$
with the polarization $\varsigma_{f} \propto \sin\phi$

$$\Rightarrow \text{ Slope in data is } 0.020 \pm 0.097 \text{ for } M_{\Lambda\Lambda} < 2.8 \text{ GeV}$$

$$\Rightarrow -0.22 < \varsigma_{f} < 0.28 \quad (90\% \text{ CL})$$

$$\Rightarrow \text{ Under } |G_{E}| = |G_{M}| \text{ assumption}$$

 $-0.76 < \sin \phi < 0.98$

 \succ

Baryons FF measurement in BABAR

Milos, September 12, 2007

Summary

> Time-like Proton FF have been measured at several e^+e^- and pA facilities for the last ~30 years, most of them statistically limited

Precise results from BABAR obtained via ISR:

- > most accurate measurements of $\sigma(e^+e^- \rightarrow p A)$ and proton FF
- > FF measured from threshold up to $q^2 \sim 20 \text{ GeV}^2$
- > drops in the cross section and FF observed at $q^2 \sim 4.4$ and 9 GeV²
- > enhancement at threshold of the FF confirmed
- \geq $|G_E/G_M|$ measured via angular distribution for $q^2 < 9 \text{ GeV}^2$
 - $> |G_E/G_M| > 1$ just above threshold (disagreement with previous results)
- > Other open questions in Nucleon FF measurements:
 - > $|G_M^n| > |G_M^p|$ contrary to expectations
 - > JLab results on space-like proton FF

New results from *BABAR* on Λ Form Factors:

- $\succ \sigma(e^+e^- \rightarrow AA)$ and Λ FF measured from threshold up to 3 GeV
- Angular distribution and polarization measurements ==> first attempts to determine $|G_E/G_M|$ and relative phase between G_E and G_M

Perspectives

- BABAR :
 - will have 4X data by 2008 ==> increase the precision on $p \AA$ and $\Lambda \Lambda$
- expected new results from Belle in a near future
- τ /charm factory at Beijing can use ISR, too
- VEPP-2000 (BINP):
 - near threshold $e^+e^- \rightarrow p \mathring{A}$
- PANDA @ GSI:
 - $-p \mathring{A} \rightarrow e^+ e^-$ up to 20 GeV²
- ? DANAE (Frascati) $e^+e^- \rightarrow n\ddot{A}$, $e^+e^- \rightarrow p\dot{A}$
- ? Super-B factory

BACKUP SLIDES

PEP-II and **BABAR**

$e^+e^- \rightarrow p \dot{A} \gamma$: background

 \blacktriangleright 4025 events selected in 232 fb⁻¹ of data

~~6% residual background, dominated by non ISR $e^+e^- \rightarrow p \text{\AA} \pi^0$

Space-like G_E/G_M measurements

Scaling law predicts: $G_E(q^2) \approx G_M(q^2)/\mu_p$

Jlab measurement polarization method

$$\frac{G_E(q^2)}{G_M(q^2)} = -\sqrt{\frac{-2\varepsilon}{\tau(1+\tau)}} \frac{\mathcal{G}_{||}}{\mathcal{G}_{\perp}}$$
$$\frac{1}{\varepsilon} = 1 + 2(1-\tau)\tan^2\left(\frac{\theta}{2}\right)$$

 2γ + GPD correction

Dispersive analysis of G_E/G_M

Eur. Phys. J. C46, 421 (2006)

Comparison of baryon FF measured by BABAR

