

Transverse spin effects

EINN "Electromagnetic Interactions with Nucleons and Nuclei", Milos, Sept 11-15, 2007

outline

a brief introduction to transversity & friends; why do we care for transverse spin effects ?

a short and incomplete history; what is the origin of single-spin asymmetries ?

milestone results; single-spin asymmetries and not only ...

theory meets experiment; what did we learn so far ?

longitudinal structure of nucleon

studied for 40 years by hard scattering experiments, in particular *deep-inelastic scattering (DIS*)

- "deep" high resolution:
- "inelastic"

longitudinal structure of nucleon

studied for 40 years by hard scattering, in particular by *deep-inelastic scattering (DIS)*

the nucleon quark structure

$$\Phi_{\rm Corr}^{\rm Tw2}(x) = \frac{1}{2} \{ q(x) + S_{\rm L} \Delta q(x)'_{5} + \delta q(x)'_{5}'^{1} S_{\rm T} \} n^{+}$$

optical theorem:

quark-quark correlator

X

the nucleon quark structure

peculiarities of transversity

 \sim

P,S

optical theorem:

Peculiarities of h_1

- probes relativistic nature of quarks \rightarrow otherwise $h_1 = g_1$
- no gluon analog for spin-1/2 nucleon \rightarrow different Q² evolution than g_1
- sensitive to *valence* quark polarisation
- first moment of *h*₁: tensor charge (large from lattice QCD)
- angluar momentum sum rule for transversity:

(quark: λ and nucleon: Λ helicities)

P,S

k

helicity-flip amplitude *chiral-odd*

peculiarity of transversity

• *transversity* flips helicity of both quark and nucleon

a brief and incomplete history

transverse single-spin asymmetry:

expectation from theory:

 $A_N \propto \operatorname{Im}(NF^*)$

N... non-*helicity*-flip amplitude *F*... is *helicity*-flip amplitude

gauge theory: $F \rightarrow 0$ as $m_q \rightarrow 0$ $A_N \sim m_q/p_T \sim 0.001$ at $p_T = 2$ GeV

how to explain the transverse SSA?

(as in DIS) factorisation theorem for:

how to explain the transverse SSA?

II: Sivers mechanism I: Collins mechanism requires transverse quark requires spin-correlated polarisation (transversity) and transverse momentum in the spin-depedent fragmentation proton (*orbital motion*) polarized polarized \rightarrow experimental separation of Collins proton proton and Sivers contributions needed! **S**_{proton} **S**proton $p_{\pi} \times p'_{a}$ $p_q = x p_{bean}$ not possible in Φ_S jet $\boldsymbol{p}_{beam} \times \boldsymbol{p}_q$ nhoton -**p**beam -**p**beam unpolarized unpolarized proton proton

III: Qui-Stermann/Koike mechanism: initial/final state multiparton correlations twist-3 pQCD

back to lepton-hadron scattering (DIS)!

Collins and Sivers mechanism can be disentangled !!! (using transversely polarised targets)

transverse single-spin asymmetries

Collins asymmetries

first time: transversity &
 Collins FF are non-zero!

- π^+ asymmetries positive no surprise: u-quark dominance and expect $\delta q > 0$ since $\Delta q > 0$
- large negative π⁻ asymmetries
 ARE a surprise: suggests the <u>disfavoured CollinsFF</u> being large and with oposite sign:

Collins asymmetries ∎ |=| =| =|,²* |=| ĆOMPA $\mu d \rightarrow \pi(K) X$ E_b=190 GeV, √s~30 GeV all asymmtries consistent positive pions preliminary negative pions 0.1 with zero A_{Coll} • deuteron target: $\pi^{+/-}$ -0.1 lajaj — — 20jaj positive kaons 0.2 negative kaons A_{Coll} see talk by A. Vossen K+/--0.2 p_t [GeV/c] 10⁻² 10⁻¹ 0.2 0.4 0.6 0.8 0.5 X_{Bi} z

Collins asymmetries

HERMES and COMPASS data are consistent !

extracting transversity

√s~10.52 GeV

$$B(y) = y(1-y)^{cm} - \frac{1}{4} \sin^2 \Theta \qquad \text{net (anti) alignment of} \\ \text{transverse quark spins}$$

Collins fragmentation in e⁺e⁻ BELLE

√s~10.52 GeV

(547 fb⁻¹)

first glimpse of transversity

first glimpse of transversity

what about the tensor charge?

from theory and lattice: [Barone, Drago, Ratcliffe, PR 359 (2002)]

more transverse spin effects: spin-orbit correlations *Sivers* function:

distribution of unpolarised quarks in a transversely polarised nucleon

Peculiarity of f_{1T}^{\perp} • chiral-even, naïve *time reversal odd* (T-odd) • related to parton orbital momentum • violates naïve *universality* of PDF: $(f_{1T}^{\perp})_{DIS} = \bigoplus (f_{1T}^{\perp})_{DY}$

more transverse spin effects: spin-orbit correlations *Sivers* function:

distribution of unpolarised quarks in a transversely polarised nucleon

Sivers asymmetries

 π^+ are subtantial and positive:

• first unambiguous evidence for a **non-zero T-odd** distribution function in DIS

• a signature for quark orbital angular momentum !

Sivers asymmetries

• SURPRISE: K⁺ amplitude 2.3±0.3 times larger than for π^+

→ conflicts with usual expectations based on u-quark dominance

 \rightarrow suggests substantial magnitude of the Sivers fct. for sea quarks

$$K^+ = |u\bar{s}\rangle \quad \pi^+ = |u\bar{d}\rangle$$

extracting the Sivers function

use "standard" parametrisations of unpolarised fragmentation functions e^+e^-

a fit of HERMES+COMPASS pion data

a fit of HERMES+COMPASS pion data

conclusion: transversity & TMDs

transversity:

3rd basic quark distribution function (@leading twist)

first glimpse: road to an accurate extraction is still long, but exists!

TMDs: transverse momentum dependent distribution and fragmentation functions
→ Sivers pdf, Collins FF, ...many more friends

describe correlations of transverse momentum and spin \rightarrow explore spin-orbit structure

key to construct a complete picture about the spin structure of the nucleon going *beyond the collinear approximation*

fascinated by spin ?

"You think you understand something? Now add spin..." -- R. Jaffe

BACKUP SLIDES

the mother of all functions

▶ densities q(x, k) and q(x, b) not connected by Fourier transf.
 ▶ but descend from same function

 e.g. represent H(x, k, ∆) through wave functions ψ(x_i, k_i)

factorization holds at large Q², and $P_T \approx k_{\perp} \approx \Lambda_{QCD}$ Ji, Ma, Yuan $d\sigma^{lp \to lhX} = \sum_{q} (f_q(x, \mathbf{k}_{\perp}; Q^2) \otimes d\sigma d^{q \to lq}(y, \mathbf{k}_{\perp}; Q^2) \otimes D_q^h(z, \mathbf{p}_{\perp}; Q^2))$

nucleon distribution functions

@leading twist, no pT integration:

$\mathbf{N}^{\mathbf{q}}$	U	L	Т
U	\mathbf{f}_1		\mathbf{h}_1^\perp
L		\mathbf{g}_1	h_{1L}^{\perp}
Т	$\mathbf{f}_{\mathbf{1T}}^{\perp}$	g _{1T}	$\mathbf{h}_1 \mathbf{h}_{1T}^{\perp}$

 \rightarrow employ all possible polarisation observables:

 $A_{UT}, A_{UL}, A_{LU}, A_{LT} + unpol$

Polarized SIDIS cross section, up to subleading order in 1/Q

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\ddot{O}_{h} d\sigma_{UU}^{1} + \frac{1}{Q}\cos\ddot{O}_{h} d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q}\sin\ddot{O}_{h} d\sigma_{LU}^{3}$$

$$+ S_{L} \left\{ \sin 2\ddot{O}_{h} d\sigma_{UL}^{4} + \frac{1}{Q}\sin\ddot{O}_{h} d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q}\cos\ddot{O}_{h} d\sigma_{LL}^{7} \right] \right\}$$

$$+ S_{T} \left\{ \sin(\ddot{O}_{h} - \ddot{O}_{s}) d\sigma_{UT}^{8} + \sin(\ddot{O}_{h} + \ddot{O}_{s}) d\sigma_{UT}^{9} + \sin(3\ddot{O}_{h} - \ddot{O}_{s}) d\sigma_{UT}^{10} + \frac{1}{Q} \left[\sin(2\ddot{O}_{h} - \ddot{O}_{s}) d\sigma_{UT}^{11} + \sin\ddot{O}_{s} d\sigma_{UT}^{12} \right] \right\}$$

$$+ \lambda_{e} \left[\cos(\ddot{O}_{h} - \ddot{O}_{s}) d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos\ddot{O}_{s} d\sigma_{LT}^{14} + \cos(2\ddot{O}_{h} - \ddot{O}_{s}) d\sigma_{LT}^{15} \right) \right] \right\}$$

SIDISLAND

Kotzinian, **NP B441** (1995) 234 Mulders and Tangermann, **NP B461** (1996) 197 Boer and Mulders, **PR D57** (1998) 5780 Bacchetta et al., **PL B595** (2004) 309 Bacchetta et al., **JHEP 0702** (2007) 093

azimuthal single-spin asymmetries

Collins FF $H_1^{\perp}(z,k_T^2)$ correlates *transverse spin* of fragmenting quark and *transverse momentum* $P_{h\perp}$ of produced hadron h

 \rightarrow *left-right asymmetry* in the direction of the outgoing hadron

other mechanism for azimuthal (single-spin) asymmetries:

Sivers fct. : distribution of unpolarised quarks in a transversely polarised nucleon \rightarrow describes *spin-orbit correlations*

experimental prerequisites

 A_{UL}, A_{LU}, A_{UT} A_{IT} , cos2 ϕ

A_{UT} A_{LT} , A_{UL} , A_{LU} , cos2 ϕ

CLAS: A_{UL} , A_{LU} , cos2 ϕ HallA: A_{UT}, A_{LT}

≈6 GeV e⁻

H

Collins asymmetries

first time: transversity &
 Collins FF are non-zero!

 ${\rm K}^+$ amplitudes consistent with π^+ amplitudes as expected from uquark dominance

K[–] of opposite sign from
$$\pi^-$$
 (K
[–] is *all-sea* object)

alternative probe for transversity: 2-hadrons

2-hadron asymmetries

advantages:

- *direct product* of transversity and fragmentation function (no convolution)
- easier to calculate Q² evolution

Objective disadvantages: • less statistics

 cross section dependents on 9 variables → sensitive to detector acceptance effects

models for 2-hadron asymmetries

2-hadron asymmetries

interference fragmentation function between pions in s-wave and p-wave

- more than 2 hadrons \rightarrow all combinations
- exclusive ρ^0 excluded

models for 2-hadron asymmetries

template

Hermes multiplicities ->FF (see andy's talk)!

Cross sections agree with NLO pQCD down to $p_T \sim 2$ GeV/c over a wide range, $0 < \eta < 3.8$, of pseudorapidity ($\eta = -\ln \tan \theta/2$) at $\sqrt{s} = 200$ GeV.

 \Rightarrow ~order of magnitude smaller in pp \rightarrow di-jets than in semi-inclusive DIS quark Sivers asymmetry!

arXiv:0705.4629v1, submitted to PRL

Transverse spin program at RHIC is luminosity limited

Physics channel	Luminosity?	
A _N	very good	
A _N (back-to-back)	good	RHIC by 2009 at 200 GeV
A_{T} (Collins FF)	limited	JLdt ~275pb⁻¹ delivered
A_{T} (Interference FF)	limited	∫Ldt~100pb ⁻¹ accepted (eg. PHENIX: vertex cut,
A _{TT} (Jets)	not studied	trigger efficiencies, duty factor)
A _T (Drell Yan)		→ ĴLdt ~25 pb ⁻¹ transverse
A _{TT} (Drell Yan)		

Transverse Spin Physics at RHIC with Large ∫ Ldt

correlation between transverse proton spin and quark spin

 $A_{TT} \propto \delta q(x_1) \delta q(x_2)$

Collins and Interference FF $\int Ldt > 30 \text{ pb}^{-1}$

correlation between transverse protonA_T in Drell Yan spin and quark transverse momentum **∫Ldt ~ 250 pb-**1

$$A_T \propto q(x_1) \cdot (\bar{f}_{1T}^{\perp q}(x_2, k_{\perp}^2)) \cdot \frac{(I^{\text{D}} \times \vec{k}_T) \cdot \vec{S}_P}{M}$$

correlation between transverse quark A(ϕ_0) Drell Yan and quark transverse ?, not studied $N(\phi) \propto h_1^{\perp q}(x_1, k_{\perp}^2) \cdot \frac{(I^0 \times \vec{k}_{\perp}) \cdot \vec{S}_q}{M} \cdot h_1^{\perp \overline{q}}(x_2, \overline{k}_{\perp}^2) \cdot \frac{(I^0 \times \vec{k}_{\perp}) \cdot \vec{S}_{\overline{q}}}{M}$