EINN 2005, Milos

Probing QCD in the CONFINEMENT DOMAIN

Wolfram Weise

CONFINEMENT and its IMPLICATIONS

Spontaneous CHIRAL SYMMETRY BREAKING

CORRELATIONS and QUASIPARTICLES in QCD

I. INTRODUCTORY SURVEY

CONFINEMENT

Gluonic Flux Tube and Confining Potential between Heavy Quarks

Energy Density of Color Fields

STRUCTURES yet to be DISCOVERED

• GLUEBALLS

QCD predicts existence of GLUON-rich states

• **HYBRIDS**

QCD predicts quark-antiquark states with "excited" GLUE

- How do these IDEALIZED pictures translate into actual OBSERVABLES ?
- Projects: FAIR (Darmstadt) ,

GlueX / Hall D (Jefferson Lab)

CONFINEMENT and **QUARK MASSES**

Qualitative difference between HEAVY and LIGHT QUARKS

Chiral Effective Field Theory and Selected Applications

CHIRAL SYMMETRY

• QCD with N_f = 2 MASSLESS QUARKS

$$\mathcal{L}_{QCD} = \bar{\psi}_R \, i\gamma_\mu \mathcal{D}^\mu \, \psi_R + \bar{\psi}_L \, i\gamma_\mu \mathcal{D}^\mu \, \psi_L + \mathcal{L}_{GLUE}$$
$$\psi_R = \frac{1}{2} (1+\gamma_5) \psi \qquad \psi_L = \frac{1}{2} (1-\gamma_5) \psi$$

... invariant under $\psi_{R,L} \to exp\left[i\frac{\theta_{R,L}^a\tau_a}{2}\right]\psi_{R,L}$

CHIRAL SU(2)_L × SU(2)_R SYMMETRY

LOW - ENERGY QCD

Physics in the **HADRONIC** (low T) phase of QCD

$$\mathcal{Z} = tr \exp\left[-\frac{H_{QCD}}{k_BT}\right] = \sum_{n} \langle n|e^{-E_n/k_BT}|n\rangle$$

• **CONFINEMENT** at $T < T_{crit}$:

 \rightarrow Eigenstates $|n\rangle$ are (colour-singlet) **HADRONS**

• Spontaneously broken CHIRAL SU(2) x SU(2) SYMMETRY

Iow-mass collective excitations:
 GOLDSTONE BOSONS (PIONS)
 ... interact weakly at low energy / momentum

→ non-trivial VACUUM $|0\rangle$: CHIRAL (QUARK) CONDENSATE $\langle \bar{\mathbf{u}}\mathbf{u} \rangle = \langle \bar{\mathbf{d}}\mathbf{d} \rangle \neq 0$

CHIRAL EFFECTIVE FIELD THEORY

(Weinberg; Gasser & Leutwyler)

• LOW-ENERGY QCD: Effective Field Theory of weakly interacting GOLDSTONE BOSONS (PIONS)

Interacting systems of PIONS coupled to BARYONS
 (Weinberg ('68); modern developments: Ecker et al. ('94), Bernard, Kaiser, Meissner ('95) + many others)

• Low-Energy Expansion: CHIRAL PERTURBATION THEORY

"small parameter": $rac{\mathbf{p}}{4\pi\,\mathbf{f}_{\pi}} = rac{\mathsf{energy}\,/\,\mathsf{momentum}\,/\,\mathsf{pion}\,\mathsf{mass}}{\mathsf{mass}\,\mathsf{gap}\,\mathsf{of}\,\mathsf{order}\,\mathsf{I}\,\mathsf{GeV}}$

Example I: **GOLDSTONE BOSON** in **LATTICE** CD

M. Lüscher, Lattice Conf., Dublin, July 2005

ORIGIN of **MASS**

• HOW does the rest mass of the PROTON arise ? •

(D. Leinweber et al. 2004)

... at the same time: $\mathbf{M_N} \sim < \mathbf{\bar{q}q} >$

M. Procura, Th. Hemmert, W.W. Phys. Rev. D69 (2004) 034505

(see also: Adelaide / JLab group, D. Leinweber, A.W.Thomas et al.)

Example II: Chiral Extrapolation of NUCLEON MASS

Example III: COMPTON SCATTERING on PROTON and DEUTERON

• Goal: determine **PROTON** and **NEUTRON** e.m. **POLARIZABILITIES**

Use **CHIRAL EFFECTIVE FIELD THEORY** for NUCLEON and DEUTERON

Analyze detailed ENERGY DEPENDENCE of amplitudes: separate PARAMAGNETISM $(\Delta(1230))$ from DIAMAGNETISM

COMPTON SCATTERING on PROTON and DEUTERON - contd. -

R. Hildebrandt, H. Grießhammer, T. Hemmert, D. Phillips: Nucl. Phys. A 748 (2005) 573

Example IV: TENSOR STRUCTURE FUNCTION b_1 of the DEUTERON

• Deep-inelastic scattering from a POLARIZED DEUTERON (spin-one) target

$${f b_1}({f x},{f Q^2}) = rac{1}{2}\sum_{f q} {f e_q^2} \left[{f q^{m=0}}({f x},{f Q^2}) - {f q^{|m|=1}}({f x},{f Q^2})
ight]$$

 Sensitive to TENSOR component of GOLDSTONE BOSON (pion) exchange between PROTON and NEUTRON

Physics at the interface between partons and hadrons / nuclei

HERMES data: C. Riedl et al. (2005)

THEORY (prediction): J. Edelmann, G. Piller, W. W. Phys. Rev. C 57 (1998) 3392

Field Strength Correlation Length

Quasiparticles: Nambu & Jona-Lasinio Model

Diquarks and related

GLUONIC FIELD STRENGTH CORRELATIONS from LATTICE QCD

Gluon Condensate:

$$\mathcal{G}_0 \equiv \left\langle \frac{2\alpha_s}{\pi} Tr \, G_{\mu\nu} G_{\mu\nu} \right\rangle \sim 1.6 \, GeV \, fm^{-3} \qquad (G_{\mu\nu} \equiv \frac{\lambda_a}{2} G^a_{\mu\nu})$$

Field Strength Correlation Function:

$$\mathcal{D}(x,y) \equiv \langle \frac{2\alpha_s}{\pi} Tr \, G_{\mu\nu}(x) \mathcal{S}(x,y) G_{\mu\nu}(y) \mathcal{S}^{\dagger}(x,y) \rangle \sim \mathcal{G}_0 \exp(-|x-y|/l_c)$$

A SCHEMATIC MODEL: NJL

... updates with applications to HADRON PHYSICS: U.Vogl, W.W.; Prog. Part. Nucl. Phys. 27 (1991) 195 T. Hatsuda, T. Kunihiro; Phys. Reports 247 (1994) 221

• QUARK COLOUR CURRENT:

$$\mathbf{J}^{a}_{\mu}(x) = \bar{\psi}(x)\gamma^{\mu}\,\frac{\lambda^{a}}{2}\psi(x)$$

Assume: short correlation range for "color transport" between quarks

$$\mathcal{L} = \bar{\psi}(x) \left(i\gamma^{\mu} \partial_{\mu} - \mathbf{m}_0 \right) \psi(x) + \mathcal{L}_{int}$$

$$\mathcal{L}_{int} = -G_c \,\mathbf{J}^a_\mu(x) \,\mathbf{J}^\mu_a(x)$$

LOCAL SU(N_c) gauge symmetry of QCD GLOBAL SU(N_c) symmetry of NJL model from local interaction of quark colour currents ...

 $\mathcal{L}_{int} = -G_c \, \mathbf{J}^a_\mu(x) \, \mathbf{J}^\mu_a(x)$ (+ instanton-induced interaction)

via Fierz transform to ...

→ QUARK-ANTIQUARK channels
 + vector
 + axial vector
 + colour octet terms
 → DIQUARK channels
 + colour octet terms
 + colour octet terms

from (light) current quarks to (massive) **CONSTITUENT QUARKS**

 $\bullet \qquad M = m_0 - 2G \langle \bar{\psi}\psi \rangle \qquad \text{(gap equation)}$

spontaneous Chiral Symmetry Breaking

- pseudoscalar meson spectrum incl. GOLDSTONE PIONS
- **NEW** developments:
 - synthesis NJL & POLYAKOV LOOP (confinement)
 - modeling QCD THERMODYNAMICS

QCD THERMODYNAMICS

(Rajagopal, Wilczek, ... Colour superconductivity)

PNJL

the quest for **DIQUARKS**

Bethe-Salpeter Equation in DIQUARK channels:

Scalar Diquarks: $[\mathbf{q} \blacklozenge \mathbf{q}]_{1_{S_0}}$ strongly attractive correlations with NJL constituent quark masses $M_{u,d} = 0.35$ GeV, $M_s = 0.55$ GeV: $\blacktriangleright M_{(ud-du)} = 0.3$ GeV SCALAR - ISOSCALAR $M_{(us-su)} = 0.6$ GeV

U.Vogl, W.W.: Prog. Part. Nucl. Phys. 27 (1991) 195

• Origin of Jaffe - Wilczek interpretation of the $[ud]^2\overline{s}$ pentaquark R. Jaffe, F. Wilczek: Phys. Rev. Lett. 91 (2003) 232003

Correlations and Quasiparticles in DIS ?

 $F_2^{neutron}/F_2^{proton}\,$ in the VALENCE QUARK region $\,\, x \to 1\,$

- Confinement: "hidden" phenomenon, but: resulting symmetry breaking patterns govern LOW-ENERGY QCD
- Change of Paradigm in Hadron Physics; from naive quark-antiquark mesons and 3-quark-baryons to:

HADRONS as MANY-BODY systems

QCD VACUUM STRUCTURE and **THERMODYNAMICS**: Condensed Matter Problem

Spontaneously broken **CHIRAL SYMMETRY** implies: **PIONS** as long-wavelength constituents of nucleons (and other hadrons)

... also implies strong pairing correlations between quarks: **DIQUARKS**