Experimental probes

(mostly e & µ)

of hadron structure (mostly nucleon)

EINN05 Conference (Milos, September 2005)

<u>Santorini 2003 – G. van der Steenhoven :</u>

Hadron spectroscopy

Harvest 2002 – 2003:

Discovery $D_{s_{I}}^{*+}(2317)$

• qqq states \rightarrow baryons

Discovery $\Xi_{cc}^+(3520)$

• $qqqq\overline{q}$ states \rightarrow pentaquarks? Discovery $\theta^+(1540)$

Milos 2005: turn to V. Burkert/F. Close's talk to clarify "facts and fancy"

Electromagnetic form factors

Experiment is now sensitive to sea-quark contributions to form factors :

Density (G_E^{s})

Magnetic properties (G_M^{s})

of strange quark-antiquark pairs

Weak form factors - Strangeness

Strange quark s : the lightest of the sea-only quarks \rightarrow good candidate to study qq sea in the nucleon.

Mass:
$$\pi N \rightarrow < N \mid \overline{ss} \mid N >$$
Spin: $\Delta \Sigma \rightarrow < N \mid \overline{s} \gamma_s \gamma_\mu s \mid N >$

Hints of a "non-zero strangeness" in the nucleon.

Decomposition of electromagnetic form factors on an SU(3) basis:

 $G_{E,M} = \sum_{q=u,d,s} e^{\gamma} q G^{q} E,M$

 $(p,n) \times (E,M) \Longrightarrow 4$ equations for 6 contributions $G^{q}_{E,M}$

 \Rightarrow Use a probe which "sees" a different charge:

$$GZ_{E,M} = \sum_{q=u,d,s} e^{Z} q G^{q} E,M$$

Two proton <u>weak form factors</u>, and equivalently two <u>strange form factors</u>, may be extracted from these new measurements.

Weak form factors - Experiments

$$\sim A_0 + \lambda G_E^s + \mu G_M^s + \nu G_A^{(p+n)} \sim 10^{-6}$$

	SAMPLE	HAPPEX	PVA4	HAPPEX2	G0
	(MIT-Bates)	(JLab)	(MAMI)	+ ⁴ He	(JLab)
	1998-2002	1998	2002-04	(JLab)	2003-2005
				2003-2004	
$Q^2 \; ({ m GeV})^2$	0.04 et 0.1	0.47	0.11, 0.23	0.1	0.12 - 1
Sensitivity	$\mathbf{G}_{\mathbf{M}}^{\mathbf{s}}, \mathbf{G}_{\mathbf{A}}^{(p+n)}$	$\mathbf{G_E^s} + 0.4 \mathbf{G_M^s}$	$\mathbf{G_E^s} + 0.1/0.2 \mathbf{G_M^s}$	G_E ^s , G_M ^s	$\mathbf{G_e^s} + 0.1/0.9 \mathbf{G_M^s}$

Quark helicity distributions Δq

SIDIS Spin Asymmetries

Detect the hadron from the current fragmentation and measure the **double spin asymmetry** $A_{//}^{h}$ in the semi-inclusive process eN \rightarrow e h X

Assuming leading order (naïve) x-z factorization, get for each species h:

$$A_{1N}^{h}(x,Q^{2},z) \equiv \frac{\Delta \sigma^{h}(x,Q^{2},z)}{\sigma^{h}(x,Q^{2},z)} = \frac{\sum_{q} e_{q}^{2} \Delta q(x,Q^{2}) \cdot D_{q}^{h}(z,Q^{2})}{\sum_{q} e_{q}^{2} q(x,Q^{2}) \cdot D_{q}^{h}(z,Q^{2})}$$

Measure double-spin asymmetries

Semi-inclusive: $h = \pi^+, \pi^-, K^+, K^-$

Inclusive A_1

for both proton and deuteron

and extract

5 polarized quark distribution functions

$$\Delta u > 0, \ \Delta d < 0,$$

 $\Delta \overline{u}, \Delta \overline{d}, \Delta s$ compatible with 0

SMC PLB 420 (1998), **HERMES** PRD 71 (2005) + **JLab** exp.^t in preparation

After q(x) and $\Delta q(x)$,

 h_1 (or $\delta q(x)$ or $\Delta_{\perp}q(x)$)

is the third k_{\perp} -independent twist-2 quark distribution function

It measures the probability of having quarks with momentum fraction x

and

with transverse polarization in the same direction as the transversely polarized target.

Some characteristics :

 $h_1(x) = \Delta q(x)$ for non relativistic quarks

 $h_1(x)$ does not mix with gluon distributions in its evolution

 $h_1(x)$ suppressed at low x with respect to Δq

Its first moment yields the tensor charge δq calculable in lattice QCD

• Rich phenomenology associated with various SSA

(HERMES/CLAS A_{UL}/A_{LU} measurements in ep $\rightarrow e\pi X$, but also pp $\rightarrow \pi X$)

• SSA linked to transverse momentum distributions (TMD) of partons in the nucleon

• SSA \leftrightarrow orbital angular momentum \leftrightarrow GPD *E*, Pauli form factor F_2

(M. Anselmino' talk)

Generalized Parton Distributions

Generalized Parton Distributions

<u>Very schematically</u>, for 3q configurations represented by a wave function $\Psi(x_1, \vec{k_1}, x_2, \vec{k_2}, x_3, \vec{k_3})$

Ordinary parton distributions integrate over "spectator" quarks and over all transverse momenta:

$$q(x) \sim \int \left| \psi(x, \vec{k}_1, x_2, \vec{k}_2, x_3, \vec{k}_3) \right|^2 [dX]$$

while GPD's contain correlations

- between states of different longitudinal momenta
- between longitudinal momentum and transverse position :

$$H(x,\xi,t) \sim \int \psi^*(x-\xi,\vec{k_1}+\vec{\Delta}_{\perp},\ldots) \cdot \psi(x+\xi,\vec{k_1},\ldots) [dX]$$

 $[dX] = \delta(x + x_2 + x_3 - 1)\delta^{(2)}(\vec{k_1} + \vec{k_2} + \vec{k_3})dx_2dx_3d\vec{k_1}d\vec{k_2}d\vec{k_3}$

x and t dependence of GPDs: a femto-photography of the nucleon

F{Form factor F(t)}

"Actually *all* the electromagnetic structure of the proton is, in principle, described by the behavior of these quantities (*the FF*) as a function of q."

Hofstadter, 1961

Quark distribution q(x)

"This expression [..] summarizes *all* the information about the structure of the targetparticles (nucleon) obtainable by scattering unpolarized electrons from an unpolarized target."

Kendall, 1990

GPDs, while connecting the form factors and parton distributions, contain much more (but still *not all*) information about the e-m. structure of the nucleon.

They also have a direct link with orbital angular momentum

Deeply virtual exclusive reactions (DES) $\Pi, \rho_{I}, \omega_{I}, \Pi \Pi \dots$ **Factorization** theorems **DVCS DVMP** (Virtual Compton) (Meson production) - Leading order/twist accessible at - Handbag diagram dominance expected to moderate Q^2 , be reached at higher Q^2 , - Interference with Bethe-Heitler - Allows a separation $(H,E) \leftrightarrow (\widetilde{H},\widetilde{E})$ and process, according to quark flavors, - Different observables have different - Necessary to extract longitudinal sensitivity to the four GPDs, contribution to observables (σ_{L} , ...). (C. Muñoz Camacho's talk

and M. Mazouz' contr.)

(C. Hadjidakis' talk)

D.E.S.: an experimental challenge

D.E.S.: an experimental challenge

$\Delta G/G$ measurements

Photon gluon fusion (HERMES/COMPASS) $\gamma g \rightarrow q \overline{q}$

high p_T hadron pair $q \ \overline{q} \rightarrow h^+h^$ scale : Q² or p_T^{2} large statistics

but... physical background

Pion inclusive production (from FNAL E704 to RHIC) $\vec{p}\vec{p} \rightarrow \pi^0 X$ PHENIX, PRL 93 (2004)

Gets contributions from $gg \rightarrow gg$, $gq \rightarrow gq$, $qq \rightarrow qq$:

$$A_{LL} \propto a \left(\frac{\Delta G}{G}\right)^2 + b \left(\frac{\Delta G}{G}\right) + c$$

A technical note : e-RI scattering

Electron – Radioactive Isotopes collider still far away (GSI): need L ~ 10^{28} cm⁻²s⁻¹ Another method (SCRIT) is being developed at RIKEN:

Self Confining Radioactive Isotope Target T. Suda, PPNP 55 (2005) - electron beam bunches give focusing kick to ions (ion trapping) on $u_{n_{r}}$ electrodes in the storage ring generate a localized trapped target $(s_{0})_{10^{-26}}$ 10-22 100 10^{-1} F_c(q)1² with stable $Cs \rightarrow 1 Hz$ 10-3 10-30 10-32 10^{-4} 60 120 60 120 0 180 0 180

Momentum transfer (MeV/c)

Momentum transfer (MeV/c)

Conclusions and outlook

Nucleon structure:

Precise and exciting new data coming now and in the near future:

Form factors, (polarized) parton distributions, GPD, ΔG ,....

Many topics not (or hardly) addressed in this talk

Hadronic probes

Meson/Baryon spectroscopy

Few-nucleon systems

Hadrons in nuclear matter

Connection with AA collisions: a new state of hadronic matter

Experimental outlook:

New facilities ! (L. Cardman, H. Shimizu & G. Rosner talks)

