QCD in hard exclusive processes Selected results on generalized parton distributions

M. Diehl

Deutsches Elektronen-Synchroton DESY

24 September 2005

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	00000000000	0000000	0

1. Introduction

- 2. Quarks and gluons: some lessons from data
- 3. t dependence and impact parameter
- 4. Spin and the Pauli form factors
- 5. Conclusions

- 4 同 6 4 日 6 4 日 6

 Introduction
 Quarks and gluons
 Impact parameter
 Spin
 Conclusions

 •00
 00000
 00000000000
 0000000000
 0

Generalized parton distributions in a nutshell

• GPDs \leftrightarrow matrix elements $\langle p' | \mathcal{O} | p \rangle$ $\mathcal{O} =$ non-local operator with quark/gluon fields

・ロト ・得ト ・ヨト ・ヨト 三日

- $\blacktriangleright \ p \neq p' \rightsquigarrow$ depend on two longitud. momentum fractions $x, \ \xi$ and on $t = (p-p')^2$
- for unpolarized quarks two dist's:
 - H^q conserves proton helicity
 - E^q responsible for proton helicity flip
- \blacktriangleright if $p=p' \leadsto$ ordinary parton densities

$$H^q(x,0,0) = \left\{ \begin{array}{ll} q(x) & \mbox{for } x>0 \\ -\bar{q}(x) & \mbox{for } x<0 \end{array} \right.$$

Generalized parton distributions in a nutshell

• GPDs \leftrightarrow matrix elements $\langle p' | \mathcal{O} | p \rangle$ $\mathcal{O} =$ non-local operator with quark/gluon fields

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $\blacktriangleright \ p \neq p' \rightsquigarrow$ depend on two longitud. momentum fractions $x, \ \xi$ and on $t = (p-p')^2$
- for unpolarized quarks two dist's:
 - H^q conserves proton helicity
 - E^q responsible for proton helicity flip
- $\int dx \, x^n \operatorname{GPD}(x,\xi,t) \to \text{local operators} \to \text{form factors}$

$$\sum_{q} e_q \int_{-1}^{1} dx H^q(x,\xi,t) = F_1(t) \quad \text{Dirac}$$
$$\sum_{q} e_q \int_{-1}^{1} dx E^q(x,\xi,t) = F_2(t) \quad \text{Pauli}$$

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	00000000000	0000000	0

Processes

factorization theorems: GPDs appear in hard exclusive processes

calculated to NLO in α_s :

- ▶ DVCS $\gamma^* p \rightarrow \gamma p$ (including charm loop J. Noritzsch '03)
- ▶ light meson production $\gamma^* p \rightarrow \rho p$, πp , ... A. Belitsky and D. Müller '01, D. Ivanov et al. '04
- $\gamma p
 ightarrow J\!/\Psi p$ D. Ivanov et al. '04

in meson production NLO corrections can be large more detailed studies needed

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ ののの

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	00000000000	0000000	0

Processes

factorization theorems: GPDs appear in hard exclusive processes

calculated to NLO in α_s :

- ▶ DVCS $\gamma^* p \rightarrow \gamma p$ (including charm loop J. Noritzsch '03)
- ▶ light meson production $\gamma^* p \rightarrow \rho p, \pi p, \ldots$ A. Belitsky and D. Müller '01, D. Ivanov et al. '04
- $\gamma p
 ightarrow J\!/\Psi p$ D. Ivanov et al. '04

in meson production NLO corrections can be large more detailed studies needed

イロト 不得 トイヨト イヨト 二日

Introduction 000	Quarks and gluons	Impact parameter	Spin 0000000	Conclusions 0

Evolution

- GPDs depend on resolution scale μ
 ~ large momentum in hard process
- evolution interpolates between DGLAP eqs. (parton densities) and ERBL eqs. (meson distribution amplitudes)
- known to NLO A. Freund et al. '99

Introduction 00•	Quarks and gluons	Impact parameter	Spin 0000000	Conclusions 0

Evolution

- GPDs depend on resolution scale µ
 ~ large momentum in hard process
- evolution interpolates between DGLAP eqs. (parton densities) and ERBL eqs. (meson distribution amplitudes)
- known to NLO A. Freund et al. '99
- new: explicit solution of LO evolution A. Manashov et al. '05
 - usual parton densities: invert Mellin transform

 $M^{j}(\mu) = \int dx \; x^{j-1} \, q(x,\mu)$ evolves multiplicatively

 $q(x,\mu) = -\frac{1}{2\pi i} \int\limits_C dj \ x^{-j} \ M^j(\mu)$

- ► GPDs: moments and inversion involve Legendre functions
- $\label{eq:rescaled} \begin{tabular}{lll} \begin{tabular}{lll} \bullet & \to \end{tabular} \end{tabular} fast numeric implementation analytic approximations \end{tabular}$

quark and gluon GPDs at same $O(lpha_s)$

schematically:

$$\mathcal{A}_{\rho^0} \propto \frac{1}{\sqrt{2}} \left[\frac{2}{3} (u + \bar{u}) + \frac{1}{3} (d + \bar{d}) + \frac{3}{4} g \right]$$
$$\mathcal{A}_{\phi} \propto \frac{1}{3} (s + \bar{s}) + \frac{1}{4} g$$

(日) (周) (三) (三)

3

Introduction 000	Quarks and gluons	Impact parameter	Spin 0000000	Conclusions O

- vector meson production:
 quark and gluon GPDs at same O(α_s)
- schematically:

$$\begin{aligned} \mathcal{A}_{\rho^0} \propto \frac{1}{\sqrt{2}} \Big[\frac{2}{3} (u + \bar{u}) + \frac{1}{3} (d + \bar{d}) + \frac{3}{4} g \Big] \\ \mathcal{A}_{\phi} \propto \frac{1}{3} (s + \bar{s}) + \frac{1}{4} g \end{aligned}$$

CTEQ6L at $\mu=2~{\rm GeV}$

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	•0000		0000000	0

- vector meson production:
 quark and gluon GPDs at same O(α_s)
- schematically:

$$\begin{split} \mathcal{A}_{\rho^0} &\propto \frac{1}{\sqrt{2}} \Big[\frac{2}{3} (u + \bar{u}) + \frac{1}{3} (d + \bar{d}) + \frac{3}{4} g \Big] \\ \mathcal{A}_{\phi} &\propto \frac{1}{3} (s + \bar{s}) + \frac{1}{4} g \end{split}$$

CTEQ6L at $\mu=2~{\rm GeV}$

- vector meson production:
 quark and gluon GPDs at same O(α_s)
- schematically:

$$\begin{aligned} \mathcal{A}_{\rho^0} \propto \frac{1}{\sqrt{2}} \Big[\frac{2}{3} (u + \bar{u}) + \frac{1}{3} (d + \bar{d}) + \frac{3}{4} g \Big] \\ \mathcal{A}_{\phi} \propto \frac{1}{3} (s + \bar{s}) + \frac{1}{4} g \end{aligned}$$

CTEQ6L at $\mu = 2 \text{ GeV}$

▶ prelim. HERMES data \Rightarrow substantial gluon contrib'n in ρ^0 production at $x_B \sim 0.1$ M.D. and A. Vinnikov, '04

< □ > < ---->

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000		00000000000	0000000	O

leading twist LO calculation M.D. et al. '05 ('conventional' double distribution model for GPDs)

- gluons may be non-negligible even in JLAB kinematics
- substantial uncertainties on conventional gluon densities
- warning: should do NLO evaluation

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	00000000000	0000000	0

leading twist LO calculation M.D. et al. '05 ('conventional' double distribution model for GPDs)

- gluons may be non-negligible even in JLAB kinematics
- substantial uncertainties on conventional gluon densities
- warning: should do NLO evaluation
- ► calculated σ(ρ⁰)/σ(φ) too large but expect extra suppression for φ (strange quark mass)

Quarks and gluons

Impact parameter

Spin 000000

Conclusions

► leading-twist calculations for vector meson production overshoot data factors of several at Q² ≤ 5 GeV²

- strong suppression from meson k_T in hard scattering
 - L. Frankfurt et al. '95; M. Vanderhaeghen et al. '99
- new analysis for small x_B (gluons only)

Feg.

hep-ph/0501242, CTEQ5M gluon, double distribution model

- ► leading-twist calculations for vector meson production overshoot data factors of several at $Q^2 \leq 5 \text{ GeV}^2$
- strong suppression from meson k_T in hard scattering
 - L. Frankfurt et al. '95; M. Vanderhaeghen et al. '99
- new analysis for small x_B (gluons only)

CTEQ5M gluon

P. Kroll, S. Goloskokov '05

Introduction 000 Quarks and gluons

Impact parameter

Spin

(日) (同) (三) (三)

Conclusions

- ► directly sensitive to gluon distribution at small x unlike inclusive struct. funct. F₂(x, Q²)
- ► despite uncertainties in modelling g(x) ~→ GPD J/Ψ data cast doubt on some gluon distrib's

T. Teubner, DIS 2005, plots by P. Fleischmann (H1)

► alternative model for g(x), q(x) ~→ GPD (not based on double distrib's)

V. Guzey and M. Polyakov '05, based on M. Polyakov and A. Shuvaev '02

- satisfies Lorentz invariance (polynomiality) relations
- good description of DVCS data from HERA (LO calculation)

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000		•00000000000	0000000	0

The t dependence

 \blacktriangleright at small x and small t parametrize

 $d\sigma/dt \propto e^{-B|t|}$

▶ ρ and ϕ : "pointlike" $\gamma^* \rightarrow q\bar{q}$ for large Q^2 J/Ψ : "pointlike" $\gamma \rightarrow c\bar{c}$ even for $Q^2 = 0$

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000		•00000000000	0000000	0

The t dependence

 \blacktriangleright at small x and small t parametrize

 $d\sigma/dt \propto e^{-B|t|}$

▶ ρ and ϕ : "pointlike" $\gamma^* \rightarrow q\bar{q}$ for large Q^2 J/Ψ : "pointlike" $\gamma \rightarrow c\bar{c}$ even for $Q^2 = 0$

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000		•0000000000	0000000	O

The t dependence

▶ at small x and small t parametrize

 $d\sigma/dt \propto e^{-B|t|}$

 $\triangleright \rho$ and ϕ : "pointlike" $\gamma^* \rightarrow q\bar{q}$ for large Q^2 J/Ψ : "pointlike" $\gamma \rightarrow c\bar{c}$ even for $Q^2 = 0$

H1 Coll. '05

Introduction 000	Quarks and gluons	Impact parameter	Spin 0000000	Conclusions 0

Small x

neglect interplay of x and ξ simple ansatz: GPD $\sim \left(\frac{1}{x}\right)^{\alpha+\alpha' t} = x^{-\alpha} e^{t\alpha' \log(1/x)}$

- exclusive J/Ψ production (gluons)
 - photoproduction

H1 preliminary (DIS 05)

・ロト ・四ト ・ヨト ・ヨト ・ヨ

 $\alpha = 1.224 \pm 0.010 \pm 0.012$

 $\alpha' = 0.164 \pm 0.028 \pm 0.030 \text{ GeV}^{-2}$

- similar in electroproduction
- values very different in soft processes γp → ρp, pp → pp, ... for α is well-known from inclusive γ*p → X vs. γp → X

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000		0000000000	0000000	O

Small x

neglect interplay of x and ξ simple ansatz: GPD $\sim \left(\frac{1}{x}\right)^{\alpha+\alpha' t} = x^{-\alpha} e^{t\alpha' \log(1/x)}$

- ▶ in nonsinglet sector (quarks only, no gluons) $\alpha \sim 0.4...0.5$ in parton distrib's at low scale similar to soft processes (meson trajectories)
- ▶ α' in partonic regime? ... wait a few slides

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	0000000000	0000000	0

Impact parameter

 states with definite light-cone momentum p⁺ and transverse position (impact parameter):

$$|p^+, \mathbf{b}\rangle = \int d^2 \boldsymbol{p} \, e^{-i\boldsymbol{b} \, \boldsymbol{p}} |p^+, \boldsymbol{p}\rangle$$

formal: eigenstates of 2 dim. position operator

- can exactly localize proton in 2 dimensions no limitation by Compton wavelength
- ► and stay in frame where proton moves fast → parton interpretation

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	0000000000	0000000	0

Impact parameter

 states with definite light-cone momentum p⁺ and transverse position (impact parameter):

$$|p^+, \boldsymbol{b}\rangle = \int d^2 \boldsymbol{p} \, e^{-i\boldsymbol{b} \, \boldsymbol{p}} \, |p^+, \boldsymbol{p}\rangle$$

formal: eigenstates of 2 dim. position operator
b is center of momentum of the partons in proton

$$\boldsymbol{b} \underbrace{ \begin{array}{c} \boldsymbol{b} \\ \hline \boldsymbol{p}_i^+, \boldsymbol{b}_i \end{array}}_{p_i^+, \boldsymbol{b}_i} \qquad \boldsymbol{b} = \frac{\sum_i p_i^+ \boldsymbol{b}_i}{\sum_i p_i^+} \qquad (i = q, \bar{q}, g)$$

consequence of Lorentz invariance nonrelativistic analog: Galilei invariance \Rightarrow center of mass

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	0000000000	0000000	0

Impact parameter GPDs

in following specialize to $\xi=0$

impact parameter distribution

$$q(x, \mathbf{b}^2) = (2\pi)^{-2} \int d^2 \mathbf{\Delta} e^{-i\mathbf{\Delta} \cdot \mathbf{b}} H^q(x, \xi = 0, t = -\mathbf{\Delta}^2)$$

gives distribution of quarks with

- longitudinal momentum fraction \boldsymbol{x}
- transverse distance b from proton center M. Burkardt '00
- average impact parameter

$$\langle b^2 \rangle_x = \frac{\int d^2 b \ b^2 \ q(x, b^2)}{\int d^2 b \ q(x, b^2)} = 4 \frac{\partial}{\partial t} \log H^q(x, \xi, t) \Big|_{t=0}$$

(4月) とうきょうきょう

d = *b*/(1 − *x*) = distance of selected parton from spectator system gives lower bound on overall size of proton

 \blacktriangleright finite size of configurations with $x \to 1$ implies

$$\langle b^2 \rangle_x \sim (1-x)^2$$

M. Burkardt, '02, '04

(日) (周) (三) (三)

$$\begin{array}{ll} \mbox{Small x:} \\ H(x,t) \sim e^{tB + \alpha' \log(1/x)} & \rightsquigarrow & \langle b^2 \rangle_x \sim B + \alpha' \log(1/x) \end{array}$$

Introduction 000	Quarks and gluons	Impact parameter	Spin 0000000	Conclusions 0

Evolution

▶ q(x, b²) fulfils usual DGLAP evolution equation for non-singlet (e.g. q_{NS} = q - q̄ or q_{NS} = u - d):

$$\mu^{2} \frac{d}{d\mu^{2}} q_{\rm NS}(x, b^{2}, \mu^{2}) = \int_{x}^{1} \frac{dz}{z} \left[P\left(\frac{x}{z}\right) \right]_{+} q_{\rm NS}(z, b^{2}, \mu^{2})$$

evolution local in b (let $1/\mu \ll b$ to be safe)

イロト 不得下 イヨト イヨト 二日

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	00000000000	0000000	O

Evolution

▶ q(x, b²) fulfils usual DGLAP evolution equation for non-singlet (e.g. q_{NS} = q - q̄ or q_{NS} = u - d):

$$\mu^{2} \frac{d}{d\mu^{2}} q_{\rm NS}(x, b^{2}, \mu^{2}) = \int_{x}^{1} \frac{dz}{z} \left[P\left(\frac{x}{z}\right) \right]_{+} q_{\rm NS}(z, b^{2}, \mu^{2})$$

evolution local in b (let $1/\mu \ll b$ to be safe)

average

$$\langle b^2 \rangle_x = \frac{\int d^2 b \ b^2 \ q_{\rm NS}(x, b^2)}{\int d^2 b \ q_{\rm NS}(x, b^2)}$$

evolves as

$$\mu^2 \frac{d}{d\mu^2} \langle b^2 \rangle_x = -\frac{1}{q_{\rm NS}(x)} \int_x^1 \frac{dz}{z} P\left(\frac{x}{z}\right) q_{\rm NS}(z) \left[\langle b^2 \rangle_x - \langle b^2 \rangle_z \right]$$

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	00000000000	0000000	0

Information from electromagnetic form factors

 \blacktriangleright ff's constrain interplay of x and b dependence

M.D. et al. '04, M. Guidal et al. '04

イロト 不得下 イヨト イヨト 三日

• e.m. current \rightsquigarrow only $q - \bar{q}$ $H^q_v(x,t) = H^q(x,t) - H^{\bar{q}}(x,t)$

$$\begin{array}{lll} F_1^p(t) &=& \int_0^1 dx \left[\frac{2}{3} H_v^u(x,t) - \frac{1}{3} H_v^d(x,t) \right] \\ F_1^n(t) &=& \int_0^1 dx \left[\frac{2}{3} H_v^d(x,t) - \frac{1}{3} H_v^u(x,t) \right] \end{array}$$

ansatz: H^q_v(x,t) = q_v(x) exp[tf_q(x)] (b²)^q_x = 4f_q(x)
ansatz for f_q(x) interpolates between
f_q(x) → α' log(1/x) for x → 0
f_q(x) ~ (1-x)² for x → 1

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	00000000000	0000000	0

Information from electromagnetic form factors

 \blacktriangleright ff's constrain interplay of x and b dependence

M.D. et al. '04, M. Guidal et al. '04

イロン 不通 と 不良 と 不良 と 一項

• e.m. current \rightsquigarrow only $q - \bar{q}$

$$H_v^q(x,t) = H^q(x,t) - H^q(x,t)$$

$$\begin{aligned} F_1^p(t) &= \int_0^1 dx \left[\frac{2}{3} H_v^u(x,t) - \frac{1}{3} H_v^d(x,t) \right] \\ F_1^n(t) &= \int_0^1 dx \left[\frac{2}{3} H_v^d(x,t) - \frac{1}{3} H_v^u(x,t) \right] \end{aligned}$$

▶ ansatz: $H^q_v(x,t) = q_v(x) \exp[tf_q(x)] \quad \langle b^2 \rangle^q_x = 4f_q(x)$

► ansatz for $f_q(x)$ interpolates between $f_q(x) \rightarrow \alpha' \log(1/x)$ for $x \rightarrow 0$ $f_q(x) \sim (1-x)^2$ for $x \rightarrow 1$

▶ good description of data with $\alpha' = 0.9$ to 1 GeV⁻²

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	000000000000	0000000	0

Lessons from the fit

▶ clear drop with x of average distance d = b/(1 - x) \leftrightarrow strong correlation of x and t dependence

000 000000 00000000 00000000 0	Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
	000	00000	000000000000	0000000	0

Lessons from the fit

- ▶ clear drop with x of average distance d = b/(1-x) \leftrightarrow strong correlation of x and t dependence
- region x ≥ 0.8 contributes less than 5% to form factors → data cannot fix asymptotic behavior of d_q(x) for x → 1

 d quark distribution less well determined improvement with better data for F₁ⁿ

► to describe both F_1^p and F_1^n well fit wants $d_d(x) > d_u(x)$ for moderate to large x $\leftrightarrow d$ quarks more "spread out" than u quarks

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	000000000000	0000000	0

Compare with lattice results

matrix elements of local operators \leftrightarrow form factors calculate in lattice QCD

- main systematic uncertainties from
 - omission of "disconnected" diagrams but: cancel in difference of u and d
 - extrapolation to physical pion mass

figure: J. Negele, hep-lat/0211022

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	000000000000	0000000	0

Compare with lattice results

matrix elements of local operators \leftrightarrow form factors calculate in lattice QCD

- J. Negele et al., hep-lat/0404005
 - Wilson fermions
 - ► $m_{\pi} = 870 \text{ MeV}$

• typical x in $\int dx \, x^n q(x, b)$ estimated as

$$\langle x \rangle = \frac{\int dx \, x^{n+1} q(x)}{\int dx \, x^n q(x)}$$

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	00000000000	0000000	0

Large t and the Feynman mechanism

 \blacktriangleright if impose that spectators have virtualities $\sim \Lambda^2$ then

$$1 - x \sim \Lambda / \sqrt{-t}$$

- ▶ large-t asymptotics with our ansatz: $\langle 1-x \rangle_t \sim 1/\sqrt{-t}$ numerically seen for $-t\gtrsim 5~{\rm GeV}^2$
- ▶ get Drell-Yan relation $F_1^q(t) \sim |t|^{-(1+\beta_q)}$ if $q(x) \sim (1-x)^{\beta_q}$ at large xCTEQ6M distributions at $\mu = 2$ GeV: $\beta_u \sim 3.4$ and $\beta_d \sim 5.0$ (for 0.5 < x < 0.9)

Introduction 000 Quarks and gluons

Impact parameter

Spin 0000000 Conclusions

• very different u(x) and d(x) for large x

 \leftrightarrow very different u and d moments at large t

▶ hope to test with experimental data on Fⁿ₁(t) and F^p₁(t) and Ittice calculations of higher moments

$$\begin{split} h^q_{n,0}(t) = \\ \int_0^1 \! dx \, x^{n-1} \, H^q_v(x,t) \end{split}$$

- **4 A**

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000		00000000000	•000000	0

Spin and the Pauli form factors

► $E \leftrightarrow$ nucleon helicity flip $\langle \downarrow | \mathcal{O} | \uparrow \rangle$ \leftrightarrow transverse pol. difference $|X\pm\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle \pm |\downarrow\rangle)$

 $\langle X + |\mathcal{O}|X + \rangle - \langle X - |\mathcal{O}|X - \rangle = \langle \uparrow |\mathcal{O}| \downarrow \rangle + \langle \downarrow |\mathcal{O}| \uparrow \rangle$

 \blacktriangleright quark density in proton state $|X\!+\rangle$

$$q_v^X(x,\mathbf{b}) = q_v(x,b) - \frac{b^y}{m} \frac{\partial}{\partial b^2} e_v^q(x,b)$$

shifted in y direction $e_v^q(x,b)$ is Fourier transform of $E_v^q(x,t)$

M. Burkardt '02

イロト 不得下 イヨト イヨト 二日

- ► $\int dx E^u(x,0) = \kappa^u \approx 1.67$ and $\int dx E^d(x,0) = \kappa^d \approx -2.03$ \rightarrow large spin-orbit correlations
- relation with transverse momentum dependent densities
 → Sivers function
 M. Burkardt et al. '04
- similar for generalized transversity distributions

M.D. and P. Hägler '05, M. Burkardt '05

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction (Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	0000000000	000000	0

density representation

$$q_v^X(x, \mathbf{b}) = q_v(x, b) - \frac{b^y}{m} \frac{\partial}{\partial b^2} e_v^q(x, b)$$

gives positivity bound

M. Burkardt '03

$$\begin{split} \left[E^q(x,t=0) \right]^2 &\leq m^2 \Big[q(x) + \Delta q(x) \Big] \left[q(x) - \Delta q(x) \right] \\ &\times 4 \, \frac{\partial}{\partial t} \ln \left[H^q(x,t) \pm \tilde{H}^q(x,t) \right]_{t=0} \end{split}$$

 \Rightarrow E^q must fall faster than H^q at large x

Introduction 000	Quarks and gluons	Impact parameter	Spin 000●000	Conclusions 0

M.D. et al. '04, M. Guidal et al. '04

イロト 不得下 イヨト イヨト 二日

- ▶ sum rules: Pauli ff's $\leftrightarrow E^q_v(x,t) = E^q(x,t) E^{\bar{q}}(x,t)$
- ▶ ansatz $E_v^q(x,t) = e_v(x) \exp[t g_q(x)]$ $g_q(x)$ same form as $f_q(x)$ in ansatz for H_v^q
- ▶ shape of forward limit $e_v^q(x)$ not known → ansatz

$$e_v^q = \mathcal{N}_q \ x^{-\alpha} (1-x)^{\beta_q}$$

 \mathcal{N}_q determined by p and n magnetic moments

Introduction 000	Quarks and gluons	Impact parameter	Spin 0000000	Conclusions 0

M.D. et al. '04, M. Guidal et al. '04

イロト 不得下 イヨト イヨト 二日

- ▶ sum rules: Pauli ff's $\leftrightarrow E_v^q(x,t) = E^q(x,t) E^{\bar{q}}(x,t)$
- ▶ ansatz $E_v^q(x,t) = e_v(x) \exp[t g_q(x)]$ $g_q(x)$ same form as $f_q(x)$ in ansatz for H_v^q
- ▶ shape of forward limit $e_v^q(x)$ not known → ansatz

$$e_v^q = \mathcal{N}_q \ x^{-\alpha} (1-x)^{\beta_q}$$

 \mathcal{N}_q determined by p and n magnetic moments

- obtain good fit of $F_2^p(t)$ and $F_2^n(t)$
 - $\alpha' = 0.9 \ {\rm GeV}^{-2}$ and $\alpha = 0.55$

ok with Regge phenomenology

large allowed regions of β_q and parameters in g_q(x)
 but positivity constraints seriously limit parameter space in particular β_d ≥ 5 and β_u ≥ 3.5

Introduction 000 Quarks and gluons

Impact parameter

Spin 00000000

Conclusions

orbital angular momentum carried by valence quarks

individual u and d quite well determined

- $2\langle J_v^u \rangle = 2\langle L_v^u \rangle + 0.93$ and $2\langle J_v^d \rangle = 2\langle L_v^d \rangle 0.34$
- ▶ $2\langle L_v^u L_v^d \rangle = -(0.77 \div 0.92)$ at $\mu = 2$ GeV

strong cancellations in $2\langle L_v^u + L_v^d \rangle = -(0.11 \div 0.22)$

Introduction 000 Quarks and gluons

Impact parameter

Spin 0000000 Conclusions

orbital angular momentum carried by valence quarks

 $\langle L_v^q \rangle = \frac{1}{2} \int dx \left[x e_v^q(x) + x q_v(x) - \Delta q_v(x) \right]$

▶ $2\langle L_v^u - L_v^d \rangle = -(0.77 \div 0.92)$ at $\mu = 2 \text{ GeV}$

lattice results:

QCDSF: $2\langle L_v^u - L_v^d \rangle = -0.9 \pm 0.12$ G. Schierholz, LC 2005 LHPC: $2\langle L_v^u - L_v^d \rangle = -0.25 \pm 0.05$ for $m_{\pi} = 897$ MeV from hep-lat/0410017

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000	00000	00000000000	000000	0

calculation of $E^u + E^d$ in chiral soliton model J. Ossmann et al. '05

イロト イポト イヨト イヨト

 Introduction
 Quarks and gluons
 Impact parameter
 Spin
 Conclusions

 000
 00000
 0000000000
 0000000
 0
 0

calculation of $E^u + E^d$ in chiral soliton model J. Ossmann et al. '05

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
000		00000000000	0000000	•

Conclusions

- vector meson prodution: very sensitive to gluon distrib'n even in fixed-target kinematics higher twist corrections essential for realistic cross sections
- impact parameter picture: naturally implemented at a rigorous level
- \blacktriangleright $F_1(t)$ data and lattice $\, \rightsquigarrow \,$ strong decrease of $\langle {m b}^2 \rangle$ with x
- $F_1(t)$ data consistent with Feynman mechanism
 - $\rightsquigarrow \quad \text{Drell-Yan relation}$
 - \rightsquigarrow striking effects for d quark part of form factors
- ► $E \rightarrow$ physics of transverse spin and \rightarrow orbital angular momentum
- ▶ attempts for quantitative understanding of E "valence" contributions: L^{u-d} big and L^{u+d} small need direct measurements to learn more

- * @ * * 注 * * 注 * - 注